The immuneML ecosystem for machine learning analysis of adaptive immune receptor repertoires

被引:41
|
作者
Pavlovic, Milena [1 ,2 ,3 ]
Scheffer, Lonneke [1 ,2 ]
Motwani, Keshav [4 ]
Kanduri, Chakravarthi [2 ]
Kompova, Radmila [2 ]
Vazov, Nikolay [6 ]
Waagan, Knut [6 ]
Bernal, Fabian L. M. [6 ]
Costa, Alexandre Almeida [7 ]
Corrie, Brian [8 ]
Akbar, Rahmad [9 ,10 ]
Al Hajj, Ghadi S. [1 ]
Balaban, Gabriel [1 ,2 ]
Brusko, Todd M. [4 ,5 ]
Chernigovskaya, Maria [9 ,10 ]
Christley, Scott [11 ]
Cowell, Lindsay G. [12 ]
Frank, Robert [9 ,10 ]
Grytten, Ivar [1 ,2 ]
Gundersen, Sveinung [2 ]
Haff, Ingrid Hobaek [12 ]
Hovig, Eivind [1 ,2 ,15 ]
Hsieh, Ping-Han [16 ]
Klambauer, Gunter [13 ,14 ]
Kuijjer, Marieke L. [16 ,17 ]
Lund-Andersen, Christin [15 ,18 ]
Martini, Antonio [1 ]
Minotto, Thomas [12 ]
Pensar, Johan [12 ]
Rand, Knut [1 ,2 ]
Riccardi, Enrico [1 ,2 ]
Robert, Philippe A. [9 ,10 ]
Rocha, Artur [7 ]
Slabodkin, Andrei [9 ,10 ]
Snapkov, Igor [9 ,10 ]
Sollid, Ludvig M. [3 ,9 ,10 ]
Titov, Dmytro [2 ]
Weber, Cedric R. [19 ]
Widrich, Michael [13 ,14 ]
Yaari, Gur [20 ]
Greiff, Victor [9 ,10 ]
Sandve, Geir Kjetil [1 ,2 ,3 ]
机构
[1] Univ Oslo, Dept Informat, Oslo, Norway
[2] Univ Oslo, Ctr Bioinformat, Oslo, Norway
[3] Univ Oslo, KG Jebsen Ctr Coeliac Dis Res, Inst Clin Med, Oslo, Norway
[4] Univ Florida, Diabet Inst, Coll Med, Dept Pathol Immunol & Lab Med, Gainesville, FL USA
[5] Univ Florida, Diabet Inst, Coll Med, Dept Pediat, Gainesville, FL USA
[6] Univ Oslo, Univ Ctr Informat Technol, Oslo, Norway
[7] Inst Syst & Comp Engn Technol & Sci, Porto, Portugal
[8] Simon Fraser Univ, Biol Sci, Burnaby, BC, Canada
[9] Univ Oslo, Dept Immunol, Oslo, Norway
[10] Oslo Univ Hosp, Oslo, Norway
[11] UT Southwestern Med Ctr, Dept Populat & Data Sci, Lawton, OK USA
[12] Univ Oslo, Dept Math, Oslo, Norway
[13] Johannes Kepler Univ Linz, Inst Machine Learning, ELLIS Unit Linz, Linz, Austria
[14] Johannes Kepler Univ Linz, Inst Machine Learning, LIT AI Lab, Linz, Austria
[15] Oslo Univ Hosp, Norwegian Radium Hosp, Inst Canc Res, Dept Tumor Biol, Oslo, Norway
[16] Univ Oslo, Ctr Mol Med Norway NCMM, Nordic EMBL Partnership, Oslo, Norway
[17] Leiden Univ, Dept Pathol, Med Ctr, Leiden, Netherlands
[18] Inst Clin Med, Univ Oslo, Fac Med, Oslo, Norway
[19] Swiss Fed Inst Technol, Dept Biosyst Sci & Engn, Zurich, Switzerland
[20] Bar Ilan Univ, Fac Engn, Ramat Gan, Israel
基金
欧盟地平线“2020”; 美国国家卫生研究院;
关键词
CELL; DEEP; SIGNATURES; COMMUNITY; FEATURES; PLATFORM; TOOLKIT; BLOOD;
D O I
10.1038/s42256-021-00413-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Adaptive immune receptor repertoires (AIRR) are key targets for biomedical research as they record past and ongoing adaptive immune responses. The capacity of machine learning (ML) to identify complex discriminative sequence patterns renders it an ideal approach for AIRR-based diagnostic and therapeutic discovery. So far, widespread adoption of AIRR ML has been inhibited by a lack of reproducibility, transparency and interoperability. immuneML (immuneml.uio.no) addresses these concerns by implementing each step of the AIRR ML process in an extensible, open-source software ecosystem that is based on fully specified and shareable workflows. To facilitate widespread user adoption, immuneML is available as a command-line tool and through an intuitive Galaxy web interface, and extensive documentation of workflows is provided. We demonstrate the broad applicability of immuneML by (1) reproducing a large-scale study on immune state prediction, (2) developing, integrating and applying a novel deep learning method for antigen specificity prediction and (3) showcasing streamlined interpretability-focused benchmarking of AIRR ML.
引用
收藏
页码:936 / +
页数:11
相关论文
共 50 条
  • [41] Machine learning methods revealed the roles of immune-metabolism related genes in immune infiltration, stemness, and prognosis of neuroblastoma
    Mu, Jianhua
    Gong, Jianan
    Lin, Peng
    Zhang, Mengzhen
    Wu, Kai
    CANCER BIOMARKERS, 2023, 38 (02) : 241 - 259
  • [42] Integrated analysis of machine learning and deep learning in chili pest and disease identification
    Ahmad Loti, Nurul Nabilah
    Mohd Noor, Mohamad Roff
    Chang, Siow-Wee
    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2021, 101 (09) : 3582 - 3594
  • [43] An adaptive machine learning approach to improve automatic iceberg detection from SAR images
    Barbat, Mauro M.
    Wesche, Christine
    Werhli, Adriano V.
    Mata, Mauricio M.
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2019, 156 : 247 - 259
  • [44] Drowsiness Detection Using Adaptive Hermite Decomposition and Extreme Learning Machine for Electroencephalogram Signals
    Taran, Sachin
    Bajaj, Varun
    IEEE SENSORS JOURNAL, 2018, 18 (21) : 8855 - 8862
  • [45] Signatures of GVHD and relapse after posttransplant cyclophosphamide revealed by immune profiling and machine learning
    McCurdy, Shannon R.
    Radojcic, Vedran
    Tsai, Hua-Ling
    Vulic, Ante
    Thompson, Elizabeth
    Ivcevic, Sanja
    Kanakry, Christopher G.
    Powell, Jonathan D.
    Lohman, Brian
    Adom, Djamilatou
    Paczesny, Sophie
    Cooke, Kenneth R.
    Jones, Richard J.
    Varadhan, Ravi
    Symons, Heather J.
    Luznik, Leo
    BLOOD, 2022, 139 (04) : 608 - 623
  • [46] Machine learning methods for histopathological image analysis: Updates in 2024
    Komura, Daisuke
    Ochi, Mieko
    Ishikawa, Shumpei
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2025, 27 : 383 - 400
  • [47] Comparative analysis of machine learning frameworks for automatic polyp characterization
    Jain, Aditi
    Sinha, Saugata
    Mazumdar, Srijan
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 95
  • [48] Rapid Antibiotic Susceptibility Analysis Using Microscopy and Machine Learning
    Pyayt, Anna
    Khan, Rituparna
    Brzozowski, Robert
    Eswara, Prahathees
    Gubanov, Michael
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 5804 - 5806
  • [49] Research on spoken English analysis model based on transfer learning and machine learning algorithms
    Zhang, Hui
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 38 (06) : 7377 - 7387
  • [50] Semantic speech analysis using machine learning and deep learning techniques: a comprehensive review
    Tyagi, Suryakant
    Szenasi, Sandor
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (29) : 73427 - 73456