The immuneML ecosystem for machine learning analysis of adaptive immune receptor repertoires

被引:41
|
作者
Pavlovic, Milena [1 ,2 ,3 ]
Scheffer, Lonneke [1 ,2 ]
Motwani, Keshav [4 ]
Kanduri, Chakravarthi [2 ]
Kompova, Radmila [2 ]
Vazov, Nikolay [6 ]
Waagan, Knut [6 ]
Bernal, Fabian L. M. [6 ]
Costa, Alexandre Almeida [7 ]
Corrie, Brian [8 ]
Akbar, Rahmad [9 ,10 ]
Al Hajj, Ghadi S. [1 ]
Balaban, Gabriel [1 ,2 ]
Brusko, Todd M. [4 ,5 ]
Chernigovskaya, Maria [9 ,10 ]
Christley, Scott [11 ]
Cowell, Lindsay G. [12 ]
Frank, Robert [9 ,10 ]
Grytten, Ivar [1 ,2 ]
Gundersen, Sveinung [2 ]
Haff, Ingrid Hobaek [12 ]
Hovig, Eivind [1 ,2 ,15 ]
Hsieh, Ping-Han [16 ]
Klambauer, Gunter [13 ,14 ]
Kuijjer, Marieke L. [16 ,17 ]
Lund-Andersen, Christin [15 ,18 ]
Martini, Antonio [1 ]
Minotto, Thomas [12 ]
Pensar, Johan [12 ]
Rand, Knut [1 ,2 ]
Riccardi, Enrico [1 ,2 ]
Robert, Philippe A. [9 ,10 ]
Rocha, Artur [7 ]
Slabodkin, Andrei [9 ,10 ]
Snapkov, Igor [9 ,10 ]
Sollid, Ludvig M. [3 ,9 ,10 ]
Titov, Dmytro [2 ]
Weber, Cedric R. [19 ]
Widrich, Michael [13 ,14 ]
Yaari, Gur [20 ]
Greiff, Victor [9 ,10 ]
Sandve, Geir Kjetil [1 ,2 ,3 ]
机构
[1] Univ Oslo, Dept Informat, Oslo, Norway
[2] Univ Oslo, Ctr Bioinformat, Oslo, Norway
[3] Univ Oslo, KG Jebsen Ctr Coeliac Dis Res, Inst Clin Med, Oslo, Norway
[4] Univ Florida, Diabet Inst, Coll Med, Dept Pathol Immunol & Lab Med, Gainesville, FL USA
[5] Univ Florida, Diabet Inst, Coll Med, Dept Pediat, Gainesville, FL USA
[6] Univ Oslo, Univ Ctr Informat Technol, Oslo, Norway
[7] Inst Syst & Comp Engn Technol & Sci, Porto, Portugal
[8] Simon Fraser Univ, Biol Sci, Burnaby, BC, Canada
[9] Univ Oslo, Dept Immunol, Oslo, Norway
[10] Oslo Univ Hosp, Oslo, Norway
[11] UT Southwestern Med Ctr, Dept Populat & Data Sci, Lawton, OK USA
[12] Univ Oslo, Dept Math, Oslo, Norway
[13] Johannes Kepler Univ Linz, Inst Machine Learning, ELLIS Unit Linz, Linz, Austria
[14] Johannes Kepler Univ Linz, Inst Machine Learning, LIT AI Lab, Linz, Austria
[15] Oslo Univ Hosp, Norwegian Radium Hosp, Inst Canc Res, Dept Tumor Biol, Oslo, Norway
[16] Univ Oslo, Ctr Mol Med Norway NCMM, Nordic EMBL Partnership, Oslo, Norway
[17] Leiden Univ, Dept Pathol, Med Ctr, Leiden, Netherlands
[18] Inst Clin Med, Univ Oslo, Fac Med, Oslo, Norway
[19] Swiss Fed Inst Technol, Dept Biosyst Sci & Engn, Zurich, Switzerland
[20] Bar Ilan Univ, Fac Engn, Ramat Gan, Israel
基金
欧盟地平线“2020”; 美国国家卫生研究院;
关键词
CELL; DEEP; SIGNATURES; COMMUNITY; FEATURES; PLATFORM; TOOLKIT; BLOOD;
D O I
10.1038/s42256-021-00413-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Adaptive immune receptor repertoires (AIRR) are key targets for biomedical research as they record past and ongoing adaptive immune responses. The capacity of machine learning (ML) to identify complex discriminative sequence patterns renders it an ideal approach for AIRR-based diagnostic and therapeutic discovery. So far, widespread adoption of AIRR ML has been inhibited by a lack of reproducibility, transparency and interoperability. immuneML (immuneml.uio.no) addresses these concerns by implementing each step of the AIRR ML process in an extensible, open-source software ecosystem that is based on fully specified and shareable workflows. To facilitate widespread user adoption, immuneML is available as a command-line tool and through an intuitive Galaxy web interface, and extensive documentation of workflows is provided. We demonstrate the broad applicability of immuneML by (1) reproducing a large-scale study on immune state prediction, (2) developing, integrating and applying a novel deep learning method for antigen specificity prediction and (3) showcasing streamlined interpretability-focused benchmarking of AIRR ML.
引用
收藏
页码:936 / +
页数:11
相关论文
共 50 条
  • [21] Reproducibility and Reuse of Adaptive Immune Receptor Repertoire Data
    Breden, Felix
    Prak, Eline T. Luning
    Peters, Bjoern
    Rubelt, Florian
    Schramm, Chaim A.
    Busse, Christian E.
    Heiden, Jason A. Vander
    Christley, Scott
    Bukhari, Syed Ahmad Chan
    Thorogood, Adrian
    Matsen, Frederick A.
    Wine, Yariv
    Laserson, Uri
    Klatzmann, David
    Douek, Daniel C.
    Lefranc, Marie-Paule
    Collins, Andrew M.
    Bubela, Tania
    Kleinstein, Steven H.
    Watson, Corey T.
    Cowell, Lindsay G.
    Scott, Jamie K.
    Kepler, Thomas B.
    FRONTIERS IN IMMUNOLOGY, 2017, 8
  • [22] A review of psoriasis image analysis based on machine learning
    Li, Huihui
    Chen, Guangjie
    Zhang, Li
    Xu, Chunlin
    Wen, Ju
    FRONTIERS IN MEDICINE, 2024, 11
  • [23] Evaluation and comparison of adaptive immunity through analyzing the diversities and clonalities of T-cell receptor repertoires in the peripheral blood
    Zhuo, Yue
    Yang, Xin
    Shuai, Ping
    Yang, Liangliang
    Wen, Xueping
    Zhong, Xuemei
    Yang, Shihan
    Xu, Shaoxian
    Liu, Yuping
    Zhang, Zhixin
    FRONTIERS IN IMMUNOLOGY, 2022, 13
  • [24] Dyslexia Adaptive Learning Model: Student Engagement Prediction Using Machine Learning Approach
    Hamid, Siti Suhaila Abdul
    Admodisastro, Novia
    Manshor, Noridayu
    Kamaruddin, Azrina
    Abd Ghani, Abdul Azim
    RECENT ADVANCES ON SOFT COMPUTING AND DATA MINING (SCDM 2018), 2018, 700 : 372 - 384
  • [25] Deep Sequencing of B Cell Receptor Repertoires From COVID-19 Patients Reveals Strong Convergent Immune Signatures
    Galson, Jacob D.
    Schaetzle, Sebastian
    Bashford-Rogers, Rachael J. M.
    Raybould, Matthew I. J.
    Kovaltsuk, Aleksandr
    Kilpatrick, Gavin J.
    Minter, Ralph
    Finch, Donna K.
    Dias, Jorge
    James, Louisa K.
    Thomas, Gavin
    Lee, Wing-Yiu Jason
    Betley, Jason
    Cavlan, Olivia
    Leech, Alex
    Deane, Charlotte M.
    Seoane, Joan
    Caldas, Carlos
    Pennington, Daniel J.
    Pfeffer, Paul
    Osbourn, Jane
    FRONTIERS IN IMMUNOLOGY, 2020, 11
  • [26] Profiling Immune Cells in the Kidney Using Tissue Cytometry and Machine Learning
    Winfree, Seth
    Al Hasan, Mohammad
    El-Achkar, Tarek M.
    KIDNEY360, 2022, 3 (05): : 968 - 978
  • [27] Toward Personalized Adaptive Gamification: A Machine Learning Model for Predicting Performance
    Lopez, Christian
    Tucker, Conrad
    IEEE TRANSACTIONS ON GAMES, 2020, 12 (02) : 155 - 168
  • [28] Machine learning hyperparameter selection for Contrast Limited Adaptive Histogram Equalization
    Centini Campos, Gabriel Fillipe
    Mastelini, Saulo Martiello
    Aguiar, Gabriel Jonas
    Mantovani, Rafael Gomes
    de Melo, Leonimer Flavio
    Barbon, Sylvio, Jr.
    EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2019, 2019 (1)
  • [29] Classification of Sentiment Analysis Using Machine Learning
    Parikh, Satyen M.
    Shah, Mitali K.
    INNOVATIVE DATA COMMUNICATION TECHNOLOGIES AND APPLICATION, 2020, 46 : 76 - 86
  • [30] Machine Learning Approaches to TCR Repertoire Analysis
    Katayama, Yotaro
    Yokota, Ryo
    Akiyama, Taishin
    Kobayashi, Tetsuya J.
    FRONTIERS IN IMMUNOLOGY, 2022, 13