The immuneML ecosystem for machine learning analysis of adaptive immune receptor repertoires

被引:41
|
作者
Pavlovic, Milena [1 ,2 ,3 ]
Scheffer, Lonneke [1 ,2 ]
Motwani, Keshav [4 ]
Kanduri, Chakravarthi [2 ]
Kompova, Radmila [2 ]
Vazov, Nikolay [6 ]
Waagan, Knut [6 ]
Bernal, Fabian L. M. [6 ]
Costa, Alexandre Almeida [7 ]
Corrie, Brian [8 ]
Akbar, Rahmad [9 ,10 ]
Al Hajj, Ghadi S. [1 ]
Balaban, Gabriel [1 ,2 ]
Brusko, Todd M. [4 ,5 ]
Chernigovskaya, Maria [9 ,10 ]
Christley, Scott [11 ]
Cowell, Lindsay G. [12 ]
Frank, Robert [9 ,10 ]
Grytten, Ivar [1 ,2 ]
Gundersen, Sveinung [2 ]
Haff, Ingrid Hobaek [12 ]
Hovig, Eivind [1 ,2 ,15 ]
Hsieh, Ping-Han [16 ]
Klambauer, Gunter [13 ,14 ]
Kuijjer, Marieke L. [16 ,17 ]
Lund-Andersen, Christin [15 ,18 ]
Martini, Antonio [1 ]
Minotto, Thomas [12 ]
Pensar, Johan [12 ]
Rand, Knut [1 ,2 ]
Riccardi, Enrico [1 ,2 ]
Robert, Philippe A. [9 ,10 ]
Rocha, Artur [7 ]
Slabodkin, Andrei [9 ,10 ]
Snapkov, Igor [9 ,10 ]
Sollid, Ludvig M. [3 ,9 ,10 ]
Titov, Dmytro [2 ]
Weber, Cedric R. [19 ]
Widrich, Michael [13 ,14 ]
Yaari, Gur [20 ]
Greiff, Victor [9 ,10 ]
Sandve, Geir Kjetil [1 ,2 ,3 ]
机构
[1] Univ Oslo, Dept Informat, Oslo, Norway
[2] Univ Oslo, Ctr Bioinformat, Oslo, Norway
[3] Univ Oslo, KG Jebsen Ctr Coeliac Dis Res, Inst Clin Med, Oslo, Norway
[4] Univ Florida, Diabet Inst, Coll Med, Dept Pathol Immunol & Lab Med, Gainesville, FL USA
[5] Univ Florida, Diabet Inst, Coll Med, Dept Pediat, Gainesville, FL USA
[6] Univ Oslo, Univ Ctr Informat Technol, Oslo, Norway
[7] Inst Syst & Comp Engn Technol & Sci, Porto, Portugal
[8] Simon Fraser Univ, Biol Sci, Burnaby, BC, Canada
[9] Univ Oslo, Dept Immunol, Oslo, Norway
[10] Oslo Univ Hosp, Oslo, Norway
[11] UT Southwestern Med Ctr, Dept Populat & Data Sci, Lawton, OK USA
[12] Univ Oslo, Dept Math, Oslo, Norway
[13] Johannes Kepler Univ Linz, Inst Machine Learning, ELLIS Unit Linz, Linz, Austria
[14] Johannes Kepler Univ Linz, Inst Machine Learning, LIT AI Lab, Linz, Austria
[15] Oslo Univ Hosp, Norwegian Radium Hosp, Inst Canc Res, Dept Tumor Biol, Oslo, Norway
[16] Univ Oslo, Ctr Mol Med Norway NCMM, Nordic EMBL Partnership, Oslo, Norway
[17] Leiden Univ, Dept Pathol, Med Ctr, Leiden, Netherlands
[18] Inst Clin Med, Univ Oslo, Fac Med, Oslo, Norway
[19] Swiss Fed Inst Technol, Dept Biosyst Sci & Engn, Zurich, Switzerland
[20] Bar Ilan Univ, Fac Engn, Ramat Gan, Israel
基金
欧盟地平线“2020”; 美国国家卫生研究院;
关键词
CELL; DEEP; SIGNATURES; COMMUNITY; FEATURES; PLATFORM; TOOLKIT; BLOOD;
D O I
10.1038/s42256-021-00413-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Adaptive immune receptor repertoires (AIRR) are key targets for biomedical research as they record past and ongoing adaptive immune responses. The capacity of machine learning (ML) to identify complex discriminative sequence patterns renders it an ideal approach for AIRR-based diagnostic and therapeutic discovery. So far, widespread adoption of AIRR ML has been inhibited by a lack of reproducibility, transparency and interoperability. immuneML (immuneml.uio.no) addresses these concerns by implementing each step of the AIRR ML process in an extensible, open-source software ecosystem that is based on fully specified and shareable workflows. To facilitate widespread user adoption, immuneML is available as a command-line tool and through an intuitive Galaxy web interface, and extensive documentation of workflows is provided. We demonstrate the broad applicability of immuneML by (1) reproducing a large-scale study on immune state prediction, (2) developing, integrating and applying a novel deep learning method for antigen specificity prediction and (3) showcasing streamlined interpretability-focused benchmarking of AIRR ML.
引用
收藏
页码:936 / +
页数:11
相关论文
共 50 条
  • [1] Mining adaptive immune receptor repertoires for biological and clinical information using machine learning
    Greiff, Victor
    Yaari, Gur
    Cowell, Lindsay G.
    CURRENT OPINION IN SYSTEMS BIOLOGY, 2020, 24 : 109 - 119
  • [2] Reference-based comparison of adaptive immune receptor repertoires
    Weber, Cedric R.
    Rubio, Teresa
    Wang, Longlong
    Zhang, Wei
    Robert, Philippe A.
    Akbar, Rahmad
    Snapkov, Igor
    Wu, Jinghua
    Kuijjer, Marieke L.
    Tarazona, Sonia
    Conesa, Ana
    Sandve, Geir K.
    Liu, Xiao
    Reddy, Sai T.
    Greiff, Victor
    CELL REPORTS METHODS, 2022, 2 (08):
  • [3] Reading the repertoire: Progress in adaptive immune receptor analysis using machine learning
    O'Donnell, Timothy J.
    Kanduri, Chakravarthi
    Isacchini, Giulio
    Limenitakis, Julien P.
    Brachman, Rebecca A.
    Alvarez, Raymond A.
    Haff, Ingrid H.
    Sandve, Geir K.
    Greiff, Victor
    CELL SYSTEMS, 2024, 15 (12) : 1168 - 1189
  • [4] Simulation of adaptive immune receptors and repertoires with complex immune information to guide the development and benchmarking of AIRR machine learning
    Chernigovskaya, Maria
    Pavlovic, Milena
    Kanduri, Chakravarthi
    Gielis, Sofie
    Robert, Philippe A.
    Scheffer, Lonneke
    Slabodkin, Andrei
    Haff, Ingrid Hobaek
    Meysman, Pieter
    Yaari, Gur
    Sandve, Geir Kjetil
    Greiff, Victor
    NUCLEIC ACIDS RESEARCH, 2025, 53 (03)
  • [5] Bioinformatic and Statistical Analysis of Adaptive Immune Repertoires
    Greiff, Victor
    Miho, Enkelejda
    Menzel, Ulrike
    Reddy, Sai T.
    TRENDS IN IMMUNOLOGY, 2015, 36 (11) : 738 - 749
  • [6] Profiling the baseline performance and limits of machine learning models for adaptive immune receptor repertoire classification
    Kanduri, Chakravarthi
    Pavlovic, Milena
    Scheffer, Lonneke
    Motwani, Keshav
    Chernigovskaya, Maria
    Greiff, Victor
    Sandve, Geir K.
    GIGASCIENCE, 2022, 11
  • [7] Machine Learning Analysis of Naive B-Cell Receptor Repertoires Stratifies Celiac Disease Patients and Controls
    Shemesh, Or
    Polak, Pazit
    Lundin, Knut E. A.
    Sollid, Ludvig M.
    Yaari, Gur
    FRONTIERS IN IMMUNOLOGY, 2021, 12
  • [8] simAIRR: simulation of adaptive immune repertoires with realistic receptor sequence sharing for benchmarking of immune state prediction methods
    Kanduri, Chakravarthi
    Scheffer, Lonneke
    Pavlovic, Milena
    Rand, Knut Dagestad
    Chernigovskaya, Maria
    Pirvandy, Oz
    Yaari, Gur
    Greiff, Victor
    Sandve, Geir K.
    GIGASCIENCE, 2023, 12
  • [9] simAIRR: simulation of adaptive immune repertoires with realistic receptor sequence sharing for benchmarking of immune state prediction methods
    Kanduri, Chakravarthi
    Scheffer, Lonneke
    Pavlovic, Milena
    Rand, Knut Dagestad
    Chernigovskaya, Maria
    Pirvandy, Oz
    Yaari, Gur
    Greiff, Victor
    Sandve, Geir K.
    GIGASCIENCE, 2023, 12
  • [10] Guidelines for reproducible analysis of adaptive immune receptor repertoire sequencing data
    Peres, Ayelet
    Klein, Vered
    Frankel, Boaz
    Lees, William
    Polak, Pazit
    Meehan, Mark
    Rocha, Artur
    Correia Lopes, Joao
    Yaari, Gur
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (03)