NEW HIGHER-ORDER MASS-LUMPED TETRAHEDRAL ELEMENTS FOR WAVE PROPAGATION MODELLING

被引:25
|
作者
Geevers, S. [1 ]
Mulder, W. A. [2 ,3 ]
Van der Vegt, J. J. W. [1 ]
机构
[1] Univ Twente, Dept Appl Math, NL-7500 AE Enschede, Netherlands
[2] Shell Global Solut Int BV, NL-1031 HW Amsterdam, Netherlands
[3] Delft Univ Technol, NL-2628 CD Delft, Netherlands
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2018年 / 40卷 / 05期
关键词
mass lumping; tetrahedral elements; spectral element method; wave equation; FINITE-ELEMENTS; EQUATION; SCHEMES;
D O I
10.1137/18M1175549
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
present a new accuracy condition for the construction of continuous mass-lumped elements. This condition is less restrictive than the one currently used and enabled us to construct new mass-lumped tetrahedral elements of degrees 2 to 4. The new degree-2 and degree-3 tetrahedral elements require 15 and 32 nodes per element, respectively, while currently, these elements require 23 and 50 nodes, respectively. The new degree-4 elements require 60, 61, or 65 nodes per element. Tetrahedral elements of this degree had not been found until now. We prove that our accuracy condition results in a mass-lumped finite element method that converges with optimal order in the L-2-norm and energy-norm. A dispersion analysis and several numerical tests confirm that our elements maintain the optimal order of accuracy and show that the new mass-lumped tetrahedral elements are more efficient than the current ones.
引用
收藏
页码:A2830 / A2857
页数:28
相关论文
共 50 条
  • [41] WAVE-PROPAGATION ACCORDING TO HIGHER-ORDER FIELD EQUATIONS .1.
    MEUWESE, AJ
    JANSEN, HJF
    TOLHOEK, HA
    PHYSICA A, 1975, 82 (01): : 72 - 96
  • [42] An FDTD algorithm for wave propagation in dispersive media using higher-order schemes
    Prokopidis, KP
    Kosmidou, EP
    Tsiboukis, TD
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2004, 18 (09) : 1171 - 1194
  • [43] On the wave propagation in a higher-order multi-phase curved porous system
    Zhu, Sixin
    An, Liming
    He, Yongbo
    WAVES IN RANDOM AND COMPLEX MEDIA, 2022,
  • [44] Modelling higher-order dual nondeterminacy
    Morris, Joseph M.
    Tyrrell, Malcolm
    ACTA INFORMATICA, 2008, 45 (06) : 441 - 465
  • [45] Modelling higher-order dual nondeterminacy
    Joseph M. Morris
    Malcolm Tyrrell
    Acta Informatica, 2008, 45 : 441 - 465
  • [46] Unfolding of higher-order wave dislocations
    Nye, JF
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1998, 15 (05): : 1132 - 1138
  • [47] Unfolding of higher-order wave dislocations
    Nye, J.F.
    Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1998, 15 (05): : 1132 - 1138
  • [48] Higher-order Finite Elements for Hybrid Meshes Using New Nodal Pyramidal Elements
    Morgane Bergot
    Gary Cohen
    Marc Duruflé
    Journal of Scientific Computing, 2010, 42 : 345 - 381
  • [49] Higher-order Finite Elements for Hybrid Meshes Using New Nodal Pyramidal Elements
    Bergot, Morgane
    Cohen, Gary
    Durufle, Marc
    JOURNAL OF SCIENTIFIC COMPUTING, 2010, 42 (03) : 345 - 381
  • [50] On a sequence of higher-order wave equations
    Gordoa, P. R.
    Pickering, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 461 (01) : 461 - 491