NEW HIGHER-ORDER MASS-LUMPED TETRAHEDRAL ELEMENTS FOR WAVE PROPAGATION MODELLING

被引:25
作者
Geevers, S. [1 ]
Mulder, W. A. [2 ,3 ]
Van der Vegt, J. J. W. [1 ]
机构
[1] Univ Twente, Dept Appl Math, NL-7500 AE Enschede, Netherlands
[2] Shell Global Solut Int BV, NL-1031 HW Amsterdam, Netherlands
[3] Delft Univ Technol, NL-2628 CD Delft, Netherlands
关键词
mass lumping; tetrahedral elements; spectral element method; wave equation; FINITE-ELEMENTS; EQUATION; SCHEMES;
D O I
10.1137/18M1175549
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
present a new accuracy condition for the construction of continuous mass-lumped elements. This condition is less restrictive than the one currently used and enabled us to construct new mass-lumped tetrahedral elements of degrees 2 to 4. The new degree-2 and degree-3 tetrahedral elements require 15 and 32 nodes per element, respectively, while currently, these elements require 23 and 50 nodes, respectively. The new degree-4 elements require 60, 61, or 65 nodes per element. Tetrahedral elements of this degree had not been found until now. We prove that our accuracy condition results in a mass-lumped finite element method that converges with optimal order in the L-2-norm and energy-norm. A dispersion analysis and several numerical tests confirm that our elements maintain the optimal order of accuracy and show that the new mass-lumped tetrahedral elements are more efficient than the current ones.
引用
收藏
页码:A2830 / A2857
页数:28
相关论文
共 22 条
[1]  
[Anonymous], 2002, CLASSICS APPL MATH, DOI DOI 10.1137/1.9780898719208
[2]  
Boffi D, 2010, ACTA NUMER, V19, P1, DOI 10.1017/S0962492910000012
[3]   Higher-order triangular and tetrahedral finite elements with mass lumping for solving the wave equation [J].
Chin-Joe-Kong, MJS ;
Mulder, WA ;
Van Veldhuizen, M .
JOURNAL OF ENGINEERING MATHEMATICS, 1999, 35 (04) :405-426
[4]   Higher order triangular finite elements with mass lumping for the wave equation [J].
Cohen, G ;
Joly, P ;
Roberts, JE ;
Tordjman, N .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 38 (06) :2047-2078
[5]  
COHEN G, 1995, SIAM PROC S, P270
[6]   High Order Mass-Lumping Finite Elements on Simplexes [J].
Cui, Tao ;
Leng, Wei ;
Lin, Deng ;
Ma, Shichao ;
Zhang, Linbo .
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2017, 10 (02) :331-350
[7]   THE APPLICATION OF HIGH-ORDER DIFFERENCING TO THE SCALAR WAVE-EQUATION [J].
DABLAIN, MA .
GEOPHYSICS, 1986, 51 (01) :54-66
[8]  
Fried I., 1975, International Journal of Solids and Structures, V11, P461, DOI 10.1016/0020-7683(75)90081-5
[9]   Dispersion Properties of Explicit Finite Element Methods for Wave Propagation Modelling on Tetrahedral Meshes [J].
Geevers, S. ;
Mulder, W. A. ;
van der Vegt, J. J. W. .
JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (01) :372-396
[10]   SHARP PENALTY TERM AND TIME STEP BOUNDS FOR THE INTERIOR PENALTY DISCONTINUOUS GALERKIN METHOD FOR LINEAR HYPERBOLIC PROBLEMS [J].
Geevers, Sjoerd ;
van der Vegt, J. J. W. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (05) :A1851-A1878