Synchronization of two coupled fractional-order chaotic oscillators

被引:74
作者
Gao, X [1 ]
Yu, JB [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Elect Engn, Inst Elect Syst, Chengdu 610054, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.chaos.2004.12.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The dynamics of fractional-order systems have attracted increasing attentions in recent years. In this paper, the synchronization of two coupled nonlinear fractional order chaotic oscillators is numerically demonstrated using the master-slave synchronization scheme. It is shown that fractional-order chaotic oscillators can be synchronized with appropriate coupling strength. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:141 / 145
页数:5
相关论文
共 13 条
[1]   Fractional-order Wien-bridge oscillator [J].
Ahmad, W ;
El-khazali, R ;
Elwakil, AS .
ELECTRONICS LETTERS, 2001, 37 (18) :1110-1112
[2]   On nonlinear control design for autonomous chaotic systems of integer and fractional orders [J].
Ahmad, WM ;
Harb, AM .
CHAOS SOLITONS & FRACTALS, 2003, 18 (04) :693-701
[3]   Chaos in fractional-order autonomous nonlinear systems [J].
Ahmad, WM ;
Sprott, JC .
CHAOS SOLITONS & FRACTALS, 2003, 16 (02) :339-351
[4]   FRACTIONAL ORDER STATE-EQUATIONS FOR THE CONTROL OF VISCOELASTICALLY DAMPED STRUCTURES [J].
BAGLEY, RL ;
CALICO, RA .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1991, 14 (02) :304-311
[6]   CHAOS IN A FRACTIONAL ORDER CHUAS SYSTEM [J].
HARTLEY, TT ;
LORENZO, CF ;
QAMMER, HK .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1995, 42 (08) :485-490
[7]  
Heaviside O., 1971, Electromagnetic Theory
[8]   ANALOG SIMULATION OF NON-INTEGER ORDER TRANSFER FUNCTIONS FOR ANALYSIS OF ELECTRODE PROCESSES [J].
ICHISE, M ;
NAGAYANAGI, Y ;
KOJIMA, T .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1971, 33 (02) :253-+
[9]   Chaos and hyperchaos in the fractional-order Rossler equations [J].
Li, CG ;
Chen, GR .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 341 :55-61
[10]  
LI GG, 2004, CHAOS SOLITON FRACT, V22, P549