Lattice-based sum of t-norms on bounded lattices

被引:22
|
作者
El-Zekey, Moataz [1 ]
机构
[1] Damietta Univ, Fac Engn, Dept Engn Math Phys & Sci, New Damietta 34517, Egypt
关键词
Lattice-based sum; Ordinal sum; Horizontal sum; Bounded lattice; Triangular norm and conorm; Triangular subnorm and subconorm; TRIANGULAR NORMS; ORDINAL SUMS; AGGREGATION FUNCTIONS; UNINORMS; CONSTRUCTION; LOGIC;
D O I
10.1016/j.fss.2019.01.006
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The concept of ordinal sums in the sense of Clifford have long been blamed for their limitations in constructing new t-norms including inability to cope with general bounded lattices. Motivated by this observation, and based on the lattice-based sum of lattices that has been recently introduced by El-Zekey et al., we propose a new sum-type construction of t-norms, called a lattice-based sum of t-norms, for building new t-norms on bounded lattices from given ones. The proposed sum is generalizing the well-known ordinal and horizontal sum constructions of t-norms by allowing for lattice ordered index sets. We demonstrate that, like the ordinal sum of t-norms, the lattice-based sum of t-norms can be generalized using as summands so-called t-subnorms, still leading to a t-norm. Subsequently, we apply the results for constructing several new families of t-norms and t-subnorms on bounded lattices. In the same spirit, by the duality, we will also introduce lattice-based sums of t-conorms and t-subconorms. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:60 / 76
页数:17
相关论文
共 50 条