Propagation of local spatial solitons in power-law nonlinear PT-symmetric potentials based on finite difference

被引:4
|
作者
Ji, Hao [1 ]
Xu, Yinghong [1 ]
Dai, Chaoqing [2 ]
Zhang, Lipu [3 ]
机构
[1] Zhejiang Sci Tech Univ, Dept Math, Hangzhou 310018, Peoples R China
[2] Zhejiang A&F Univ, Dept Phys, Hangzhou 311300, Peoples R China
[3] Commun Univ Zhejiang, Coll Media Engn, Hangzhou 310018, Peoples R China
关键词
nonlinear Schrodinger equation; localized spatial solitons; PT-symmetric potential; ADI difference scheme; stability; SCHRODINGER-EQUATION; OPTICAL SOLITONS; STABILITY; MEDIA;
D O I
10.1088/1572-9494/ac29b6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the (2+1)-dimensional nonlinear Schrodinger equation with power-law nonlinearity under the parity-time-symmetry potential by using the Crank-Nicolson alternating direction implicit difference scheme, which can also be used to solve general boundary problems under the premise of ensuring accuracy. We use linear Fourier analysis to verify the unconditional stability of the scheme. To demonstrate the effectiveness of the scheme, we compare the numerical results with the exact soliton solutions. Moreover, by using the scheme, we test the stability of the solitons under the small environmental disturbances.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Propagation of local spatial solitons in power-law nonlinear PT-symmetric potentials based on finite difference
    Hao Ji
    Yinghong Xu
    Chaoqing Dai
    Lipu Zhang
    Communications in Theoretical Physics, 2021, 73 (12) : 18 - 28
  • [2] Stability of solitons in PT-symmetric nonlinear potentials
    Zezyulin, D. A.
    Kartashov, Y. V.
    Konotop, V. V.
    EPL, 2011, 96 (06)
  • [3] Higher Dimensional Gaussian-Type Solitons of Nonlinear Schrodinger Equation with Cubic and Power-Law Nonlinearities in PT-Symmetric Potentials
    Chen, Yi-Xiang
    Xu, Fang-Qian
    PLOS ONE, 2014, 9 (12):
  • [4] Bragg solitons in nonlinear PT-symmetric periodic potentials
    Miri, Mohammad-Ali
    Aceves, Alejandro B.
    Kottos, Tsampikos
    Kovanis, Vassilios
    Christodoulides, Demetrios N.
    PHYSICAL REVIEW A, 2012, 86 (03):
  • [5] Stable localized spatial solitons in -symmetric potentials with power-law nonlinearity
    Wang, Yue-Yue
    Dai, Chao-Qing
    Wang, Xiao-Gang
    NONLINEAR DYNAMICS, 2014, 77 (04) : 1323 - 1330
  • [6] Nonlinear tunnelling of spatial solitons in PT-symmetric potential
    Xu, Yun-Jie
    Dai, Chao-Qing
    OPTICS COMMUNICATIONS, 2014, 318 : 112 - 119
  • [7] Three-Dimensional Structures of the Spatiotemporal Nonlinear Schrodinger Equation with Power-Law Nonlinearity in PT-Symmetric Potentials
    Dai, Chao-Qing
    Wang, Yan
    PLOS ONE, 2014, 9 (07):
  • [8] Solitons and their stability in the nonlocal nonlinear Schrodinger equation with PT-symmetric potentials
    Wen, Zichao
    Yan, Zhenya
    CHAOS, 2017, 27 (05)
  • [9] Bright spatial solitons in defocusing Kerr media with PT-symmetric potentials
    Shi, Zhiwei
    Jiang, Xiujuan
    Zhu, Xing
    Li, Huagang
    PHYSICAL REVIEW A, 2011, 84 (05)
  • [10] Bright spatial solitons in quintic-septimal nonlinear media with two families of PT-symmetric potentials
    Yi-Xiang Chen
    Fang-Qian Xu
    Yi-Liang Hu
    The European Physical Journal Plus, 132