Numerical simulation of the particle-wall collision strength and swirling effect on the performance of the axial flow cyclone separator

被引:1
|
作者
Mao, Yanqin [1 ]
Pu, Wenhao [2 ]
Cai, Liang [1 ]
Li, Chaojie [1 ]
Wang, Xiaoyue [1 ]
Zhan, Zhixing [1 ]
机构
[1] Southeast Univ, Sch Energy & Environm, Nanjing 210096, Jiangsu, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Nanjing 210016, Jiangsu, Peoples R China
基金
东南大学基金;
关键词
computational fluid dynamics; cyclone separator; particles; separation efficiency; velocity restitution ratio; LARGE-EDDY SIMULATION; CFD;
D O I
10.1515/ijcre-2020-0225
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The axial cyclone separator has simple structure, operates to reducing dust concentration in grain storehouses, and features low production cost, and convenient installation. Aiming to obtain the separation characteristics of an axial flow guide separator, the particle wall collision and the performance of multi-tubes were simulated with Fluent. The renormalization group (RNG) k - epsilon model was used to study the turbulent modeling and the user define function (UDF) was used to calculate the particle-wall collision. The simulation and experimental results were compared to verify the computation model. The results showed that the basic feature of the flow pattern remains stable and the separation efficiency of 800 kg/m(3) particles is higher than 2650 kg/m(3) particles when the inlet velocity increases from 2 to 5 m/s. When the inlet velocity was 5 m/s, the normal velocity restitution ratio had a significant effect on the efficiency, the separation efficiency of 167 yin particles changed from 76.74 to 97.93% and a smaller normal velocity restitution ratio had a higher the efficiency. In comparison, the efficiency remained unchanged when changing the tangential velocity restitution ratio. Furthermore, the effects of three target wall materials on the separation efficiency were investigated. And the simulated efficiency the of 296 yin particle of 2024 aluminum, 410 stainless steel and Ga1-4V titanium were 82.15, 79.52 and 77.53% respectively. Besides, effects of tube diameter on performances of cyclone separator were discussed and high intense collisions between particles and walls may occur in a small diameter of cyclone tube, causing deteriorated separation performance. Moreover, with the addition of the dust chamber, the efficiency of cyclone used in combination is slightly improved since the vortex in the exhaust pipe has been finely changed.
引用
收藏
页码:1009 / 1022
页数:14
相关论文
共 50 条
  • [31] Study on the effect of a new type of deswirler on the flow field and performance of a cyclone separator
    Cao, Gang
    Sun, Guogang
    Yue, Yunpeng
    Wang, Zetao
    ADVANCED POWDER TECHNOLOGY, 2024, 35 (01)
  • [33] Effect of apex cone height on particle classification performance of a cyclone separator
    Yoshida, H
    Kwan-Sik, Y
    Fukui, K
    Akiyama, S
    Taniguchi, S
    ADVANCED POWDER TECHNOLOGY, 2003, 14 (03) : 263 - 278
  • [34] Numerical Simulation Study of the Effect of Outlet on the Axial Vortex Separator
    Lou, H.
    Zhang, X.
    Liu, X.
    Wang, Y.
    Liao, R.
    JOURNAL OF APPLIED FLUID MECHANICS, 2024, 17 (09) : 2045 - 2060
  • [35] Numerical modeling of body shape effect on the performance of a square cyclone separator
    Abdi Chaghakaboodi, Hooman
    Saidi, Maysam
    PARTICULATE SCIENCE AND TECHNOLOGY, 2024, 42 (02) : 331 - 343
  • [36] Numerical Study of the Gas-Solid Separation Performance of Axial Flow Cyclone Separators
    Mao, Yanqin
    Chertovskih, Roman
    Cai, Liang
    INVENTIONS, 2024, 9 (02)
  • [37] An Experimental Study and a Numerical Simulation of the Turbulent Flow under the Vortex Finder of a Cyclone Separator
    Talbi, K.
    Nemouchi, Z.
    Donnot, A.
    Belghar, N.
    JOURNAL OF APPLIED FLUID MECHANICS, 2011, 4 (01) : 69 - 75
  • [38] Numerical simulation and experimental study of gas cyclone-liquid jet separator for fine particle separation
    Wang, Liwang
    Chen, Erwen
    Ma, Liang
    Yang, Zhanghuang
    Li, Zongzhe
    Yang, Weihui
    Wang, Hualin
    Chang, Yulong
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2022, 51 : 43 - 52
  • [39] Numerical Simulation of Flow and Particle Collision in a Rotating-Drum Bioreactor
    Jin, Jian
    Shi, Shao-Yuan
    Liu, Guo-Liang
    Zhang, Qing-Hua
    Cong, Wei
    CHEMICAL ENGINEERING & TECHNOLOGY, 2012, 35 (02) : 287 - 293
  • [40] Simulation and experimental study of effect of vortex finder structural parameters on cyclone separator performance
    Zhang, Zheng-Wei
    Li, Qing
    Zhang, Yan-Hong
    Wang, Hua-Lin
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 286