共 50 条
Towards the additive manufacturing of Ni-Mn-Ga complex devices with magnetic field induced strain
被引:16
|作者:
Ituarte, Inigo Flores
[1
,4
]
Nilsen, Frans
[2
,3
]
Nadimpalli, Venkata Karthik
[4
]
Salmi, Mika
[5
]
Lehtonen, Joonas
[6
]
Hannula, Simo-Pekka
[6
]
机构:
[1] Tampere Univ, Fac Engn & Nat Sci, Korkeakoulunkatu 6, Tampere 33014, Finland
[2] Mech Engn & Met Ind Standardizat Finland METSTA, Etelaranta 10,PL 10, Helsinki 00131, Finland
[3] Czech Acad Sci, Inst Phys, Na Slovance 1999-2, Prague 182218, Czech Republic
[4] Tech Univ Denmark, Dept Mech Engn, DK-2800 Lyngby, Denmark
[5] Aalto Univ, Dept Mech Engn, Otakaari 4, Espoo 02150, Finland
[6] Aalto Univ, Dept Chem & Mat Sci, Kemistintie 1, Espoo 02150, Finland
关键词:
Additive manufacturing;
Smart materials;
Magnetic shape-memory alloys;
4D printing;
MFIS;
SHAPE-MEMORY ALLOYS;
TWINNING STRESS;
SINGLE-CRYSTAL;
BEHAVIOR;
PARTS;
D O I:
10.1016/j.addma.2021.102485
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
Laser powder bed fusion (L-PBF) is used to produce foam-like Ni-Mn-Ga with tailored microscale and mesoscale features. Ni50-Mn28.2-Ga21.8 (at%) powder was gas atomised and processed in an L-PBF system with a range of energy density from 26.24 and 44.90 J/mm3. We characterised microscale and mesoscale properties, such as the chemical composition, crystal structure, magnetisation measurements, density, and porosity measurements as a function of process parameters, in a systematic design of experiment. Preliminary research on macroscale properties included tensile testing and magnetic field induced strain (MFIS) measurements. Results show how controlling process parameters allows tailoring the Ni-Mn-Ga polycrystalline microstructure. Hence, obtaining twinned martensitic structures with a predominant orientation going across the visible grain boundaries. All the processed samples showed a 56 Am2/kg magnetisation level, close to Ni-Mn-Ga 10 M single crystals. Mesoscale results show a distinctive porosity pattern that is tailored by the process parameters and the laser scanning strategy. In contrast, macroscale mechanical tensile test results show a brittle fracture of Ni-Mn-Ga due to the high porosity with yield stress 2-3 times higher than shown in single crystals. In sum, we built geometrically complex demonstrators with (i) microscale twinned martensitic structures with a predominant orientation going across the visible grain boundaries and (ii) mesoscale tailored periodic porosity patterns created by modifying power, scanning speed, and scanning strategy systematically. L-PBF demonstrates great potential to produce foam-like polycrystalline Ni-Mn-Ga, reducing grain boundary constraints and thus the magnetic force needed for MFIS.
引用
收藏
页数:13
相关论文