Boundary value problems for hyperholomorphic solutions of two dimensional Helmholtz equation in a fractal domain

被引:5
|
作者
Abreu Blaya, Ricardo [1 ]
Bory Reyes, Juan [2 ]
Rodriguez Dagnino, Ramon M. [3 ]
机构
[1] Univ Holguin, Fac Informat & Matemat, Holguin 80100, Cuba
[2] Univ Oriente, Santiago De Cuba, Cuba
[3] Tecnol Monterrey, Dept Ingn Elect & Computac, Monterrey 64849, NL, Mexico
关键词
Quaternionic analysis; Helmholtz equations; Boundary value problems; Fractral geometry; MAXWELLS EQUATIONS; OPERATORS;
D O I
10.1016/j.amc.2015.03.103
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A theory of quaternion-valued functions, called hyperholomorphic, of two real variables has long been established. This theory is in the same relation to the two dimensional Helmholtz equation as the usual one-dimensional complex analysis is to the Laplace equation in R-2. In this work we define a new Cauchy integral for domains with fractal boundary illustrating its applications and usage to study the jump and Dirichlet type boundary value problems in a fractal domain. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:183 / 191
页数:9
相关论文
共 50 条
  • [1] On Riemann boundary value problems for null solutions of the two dimensional Helmholtz equation
    Bory Reyes, Juan
    Abreu Blaya, Ricardo
    Rodriguez Dagnino, Ramon Martin
    Kats, Boris Aleksandrovich
    ANALYSIS AND MATHEMATICAL PHYSICS, 2019, 9 (01) : 483 - 496
  • [2] On Riemann boundary value problems for null solutions of the two dimensional Helmholtz equation
    Juan Bory Reyes
    Ricardo Abreu Blaya
    Ramón Martin Rodríguez Dagnino
    Boris Aleksandrovich Kats
    Analysis and Mathematical Physics, 2019, 9 : 483 - 496
  • [3] Boundary value problems associated to a Hermitian Helmholtz equation
    Abreu-Blaya, Ricardo
    Bory-Reyes, Juan
    Brack, Fred
    De Schepper, Hennie
    Sommen, Frank
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (02) : 1268 - 1279
  • [4] Mixed boundary value problems for the Helmholtz equation in arbitrary 2D-sectors
    Duduchava, Roland
    Tsaava, Medea
    GEORGIAN MATHEMATICAL JOURNAL, 2013, 20 (03) : 439 - 467
  • [5] On Solutions of Some Boundary Value Problems for General KdV Equation
    Ignatyev, M. Yu
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2013, 13 (01): : 46 - 49
  • [6] On the Solutions of Some Boundary Value Problems for the General Kdv Equation
    Ignatyev, M. Yu.
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2014, 17 (3-4) : 493 - 509
  • [7] On the Solutions of Some Boundary Value Problems for the General Kdv Equation
    M. Yu. Ignatyev
    Mathematical Physics, Analysis and Geometry, 2014, 17 : 493 - 509
  • [8] On boundary value problems for perturbed Hermitean matrix Dirac equations in a fractal domain
    Blaya, Ricardo Abreu
    Reyes, Juan Bory
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2014, 21 (04) : 733 - 746
  • [9] Boundary value problems for modified Helmholtz equations and applications
    Gu, Longfei
    Fu, Zunwei
    BOUNDARY VALUE PROBLEMS, 2015, : 1 - 17
  • [10] On the solutions of boundary value problems
    Akgul, Ali
    Hashemi, Mir Sajjad
    Seyfi, Negar
    INTERNATIONAL JOURNAL OF OPTIMIZATION AND CONTROL-THEORIES & APPLICATIONS-IJOCTA, 2021, 11 (02): : 199 - 205