Effects of contact angle hysteresis on drop manipulation using surface acoustic waves

被引:20
作者
Noori, Mandi Sheikholeslam [1 ]
Rahni, Mohammad Taeibi [1 ,2 ]
Taleghani, Arash Shams [2 ]
机构
[1] Sharif Univ Technol, Dept Aerosp Engn, Tehran 113658639, Iran
[2] Minist Sci Res & Technol, Aerosp Res Inst, Tehran 1465774111, Iran
关键词
Acoustofluidics; Surface acoustic waves; Two-phase flow; Flow control; Lattice Boltzmann method; Contact angle hysteresis; LATTICE BOLTZMANN SIMULATIONS; NUMERICAL-SIMULATION; LIQUID-GAS; FLOW; MODEL;
D O I
10.1007/s00162-020-00516-0
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Surface acoustic waves have gained much attention in flow control given the effects arising from acoustic streaming. In this study, the hydrodynamic interference of a drop under surface acoustic waves is comprehensively investigated and the contact angle hysteresis effects are considered, too. This paper reveals the effects of some control parameters such as wave amplitude and wave frequency on the dynamical behaviors of drop. For these purposes, a multiple-relaxation-time color-gradient model lattice Boltzmann method is developed. In these case studies, wave frequency and amplitude were in the ranges of 20-60 MHz and 0.5-2 nm, respectively. In addition, the density ratio of 1000, the kinematic viscosity ratio of 15, Reynolds numbers of 4-24, Capillary numbers of 0.0003-0.0008 and Weber numbers of 0-0.4 were considered. Results show that drop would not move, but would incline in the direction of wave propagation equal to radiation angle when the wave amplitude is low. However, the drop will initiate to move as wave amplitude is progressively augmented. Meanwhile, the increase in frequency leads to an increment of required power to change the modes of the system from streaming to pumping or jetting states. The obtained results clearly show that a reduction in viscosity and an increase in surface tension coefficient significantly influence the flow control system and enhance its sensitivity. Also, the contact angle hysteresis modeling can improve the numerical results by up to 20%.
引用
收藏
页码:145 / 162
页数:18
相关论文
共 50 条
  • [21] Influence of surface roughness on contact angle hysteresis and spreading work
    Wang, Junchao
    Wu, Yankun
    Cao, Yijun
    Li, Guosheng
    Liao, Yinfei
    COLLOID AND POLYMER SCIENCE, 2020, 298 (08) : 1107 - 1112
  • [22] Influence of surface roughness on contact angle hysteresis and spreading work
    Junchao Wang
    Yankun Wu
    Yijun Cao
    Guosheng Li
    Yinfei Liao
    Colloid and Polymer Science, 2020, 298 : 1107 - 1112
  • [23] Using sharp transitions in contact angle hysteresis to move, deflect, and sort droplets on a superhydrophobic surface
    Nilsson, Michael A.
    Rothstein, Jonathan P.
    PHYSICS OF FLUIDS, 2012, 24 (06)
  • [24] Analysis and surface energy estimation of various model polymeric surfaces using contact angle hysteresis
    Bayer, Ilker S.
    Megaridis, Constantine M.
    Zhang, Jie
    Gamota, Daniel
    Biswas, Abhijit
    JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY, 2007, 21 (15) : 1439 - 1467
  • [25] STUDY OF CONTACT-ANGLE HYSTERESIS - (IN RELATION TO BOILING SURFACE WETTABILITY)
    SHOJI, M
    ZHANG, XY
    JSME INTERNATIONAL JOURNAL SERIES B-FLUIDS AND THERMAL ENGINEERING, 1994, 37 (03) : 560 - 567
  • [26] Impact of surface forces on wetting of hierarchical surfaces and contact angle hysteresis
    Bormashenko, Edward
    Starov, Victor
    COLLOID AND POLYMER SCIENCE, 2013, 291 (02) : 343 - 346
  • [27] Manipulation of diamond nanoparticles using bulk acoustic waves
    Raeymaekers, Bart
    Pantea, Cristian
    Sinha, Dipen N.
    JOURNAL OF APPLIED PHYSICS, 2011, 109 (01)
  • [28] Impact of surface forces on wetting of hierarchical surfaces and contact angle hysteresis
    Edward Bormashenko
    Victor Starov
    Colloid and Polymer Science, 2013, 291 : 343 - 346
  • [29] ON THE EFFECT OF THE CONTACT ANGLE HYSTERESIS FOR SMALL DROPLETS ON A WETTABILITY GRADIENT SURFACE
    Reis, Felipe M. Mancio
    Lavieille, Pascal
    Blanco, Stephane
    Miscevic, Marc
    INTERFACIAL PHENOMENA AND HEAT TRANSFER, 2016, 4 (01) : 81 - 91
  • [30] Contact angle hysteresis and phase separation in dry phospholipid films with cholesterol deposited on mica surface
    Jurak, Malgorzata
    APPLIED SURFACE SCIENCE, 2015, 328 : 596 - 605