DNA double-strand break repair: a tale of pathway choices

被引:32
|
作者
Li, Jing [1 ]
Xu, Xingzhi [1 ]
机构
[1] Capital Normal Univ, Beijing Key Lab DNA Damage Response & Coll Life S, Beijing 100048, Peoples R China
基金
中国国家自然科学基金;
关键词
DSB; 53BP1; RIF1; PTIP; BRCA1; PROMOTE HOMOLOGOUS RECOMBINATION; UBIQUITIN-DEPENDENT RESPONSE; HISTONE H3 METHYLATION; 5' END RESECTION; DAMAGE SITES; H3K36; TRIMETHYLATION; 53BP1; RECRUITMENT; MITOTIC SPINDLE; DIRECTED REPAIR; PARP INHIBITION;
D O I
10.1093/abbs/gmw045
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Deoxyribonucleic acid double-strand breaks (DSBs) are cytotoxic lesions that must be repaired either through homologous recombination (HR) or non-homologous end-joining (NHEJ) pathways. DSB repair is critical for genome integrity, cellular homeostasis and also constitutes the biological foundation for radiotherapy and the majority of chemotherapy. The choice between HR and NHEJ is a complex yet not completely understood process that will entail more future efforts. Herein we review our current understandings about how the choice is made over an antagonizing balance between p53-binding protein 1 and breast cancer 1 in the context of cell cycle stages, downstream effects, and distinct chromosomal histone marks. These exciting areas of research will surely bring more mechanistic insights about DSB repair and be utilized in the clinical settings.
引用
收藏
页码:641 / 646
页数:6
相关论文
共 50 条
  • [41] DNA double-strand breaks: Their production, recognition, and repair in eukaryotes
    Ohnishi, Takeo
    Mori, Eiichiro
    Takahashi, Akihisa
    MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 2009, 669 (1-2) : 8 - 12
  • [42] HDGFRP3 interaction with 53BP1 promotes DNA double-strand break repair
    Zhang, Zhen
    Samsa, William E.
    De, Yanyan
    Zhang, Fan
    Reizes, Ofer
    Almasan, Alexandru
    Gong, Zihua
    NUCLEIC ACIDS RESEARCH, 2023, 51 (05) : 2238 - 2256
  • [43] RAP80 suppresses the vulnerability of R-loops during DNA double-strand break repair
    Yasuhara, Takaaki
    Kato, Reona
    Yamauchi, Motohiro
    Uchihara, Yuki
    Zou, Lee
    Miyagawa, Kiyoshi
    Shibata, Atsushi
    CELL REPORTS, 2022, 38 (05):
  • [44] Etoposide and illegitimate DNA double-strand break repair in the generation of MLL translocations: New insights and new questions
    Sung, P. A.
    Libura, J.
    Richardson, C.
    DNA REPAIR, 2006, 5 (9-10) : 1109 - 1118
  • [45] CDYL1-dependent decrease in lysine crotonylation at DNA double-strand break sites functionally uncouples transcriptional silencing and repair
    Abu-Zhayia, Enas R.
    Bishara, Laila A.
    Machour, Feras E.
    Barisaac, Alma Sophia
    Ben-Oz, Bella M.
    Ayoub, Nabieh
    MOLECULAR CELL, 2022, 82 (10) : 1940 - +
  • [46] ZEB1 promotes non-homologous end joining double-strand break repair
    Genetta, Thomas L.
    Hurwitz, Joshua C.
    Clark, Evan A.
    Herold, Benjamin T.
    Khalil, Shadi
    Abbas, Tarek
    Larner, James M.
    NUCLEIC ACIDS RESEARCH, 2023, 51 (18) : 9863 - 9879
  • [47] Timely double-strand break repair and pathway choice in pericentromeric heterochromatin depend on the histone demethylase dKDM4A
    Janssen, Aniek
    Colmenares, Serafin U.
    Lee, Timothy
    Karpen, Gary H.
    GENES & DEVELOPMENT, 2019, 33 (1-2) : 103 - 115
  • [48] Role of 53BP1 oligomerization in regulating double-strand break repair
    Lottersberger, Francisca
    Bothmer, Anne
    Robbiani, Davide F.
    Nussenzweig, Michel C.
    de Lange, Titia
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (06) : 2146 - 2151
  • [49] RAD18 directs DNA double-strand break repair by homologous recombination to post-replicative chromatin
    Palek, Matous
    Palkova, Natalie
    Kleiblova, Petra
    Kleibl, Zdenek
    Macurek, Libor
    NUCLEIC ACIDS RESEARCH, 2024, 52 (13) : 7687 - 7703
  • [50] Ago2 facilitates Rad51 recruitment and DNA double-strand break repair by homologous recombination
    Min Gao
    Wei Wei
    Ming-Ming Li
    Yong-Sheng Wu
    Zhaoqing Ba
    Kang-Xuan Jin
    Miao-Miao Li
    You-Qi Liao
    Samir Adhikari
    Zechen Chong
    Ting Zhang
    Cai-Xia Guo
    Tie-shan Tang
    Bing-Tao Zhu
    Xing-Zhi Xu
    Niels Mailand
    Yun-Gui Yang
    Yijun Qi
    Jannie M Rendtlew Danielsen
    Cell Research, 2014, 24 : 532 - 541