AN UPPER BOUND FOR THE CELLULARITY OF THE PHASE SPACE OF A MINIMAL DYNAMICAL SYSTEM

被引:0
|
作者
Geschke, Stefan [1 ]
机构
[1] Bausdorff Ctr Math, D-53115 Bonn, Germany
来源
TOPOLOGY PROCEEDINGS, VOL 36 | 2010年 / 36卷
关键词
boundedness; cellularity; minimal dynamical system;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a topological group acting continuously on an infinite compact space X. Suppose the dynamical system (X, G) is minimal. If G is kappa-bounded for some infinite cardinal kappa, then the cellularity of X is at most kappa.
引用
收藏
页码:393 / 398
页数:6
相关论文
共 50 条
  • [1] UPPER BOUND ON DIMENSION OF MINIMAL REALIZATIONS OF LINEAR TIME-INVARIANT DYNAMICAL SYSTEMS
    ROVEDA, CA
    SCHMID, RM
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1970, AC15 (06) : 639 - &
  • [2] An upper bound on the minimal dispersion
    Ullrich, Mario
    Vybiral, Jan
    JOURNAL OF COMPLEXITY, 2018, 45 : 120 - 126
  • [3] Upper bound on the momentum scale in noncommutative phase space of canonical type
    Gnatenko, Kh P.
    Tkachuk, V. M.
    EPL, 2019, 127 (02)
  • [4] Upper bound of time derivative of entropy for a dynamical system driven by quasimonochromatic noise
    Guo, Yongfeng
    Xu, Wei
    Liu, Hongtao
    Li, Dongxi
    Wang, Liang
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (01) : 522 - 527
  • [5] A Tight Upper Bound on the PEP of a Space-Time Coded System
    Mallik, Ranjan K.
    Zhang, Q. T.
    2006 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-12, 2006, : 1283 - 1288
  • [6] A tight upper bound on the PEP of a space-time coded system
    Mallik, Ranjan K.
    Zhang, Q. T.
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2007, 6 (09) : 3238 - 3247
  • [7] Upper bound on minimal length from deuteron
    Faruque, S. B.
    Rahman, Md. Afjalur
    Moniruzzaman, Md.
    RESULTS IN PHYSICS, 2014, 4 : 52 - 53
  • [8] PAINTING THE PHASE-SPACE PORTRAIT OF AN INTEGRABLE DYNAMICAL SYSTEM
    COFFEY, S
    DEPRIT, A
    DEPRIT, E
    HEALY, L
    SCIENCE, 1990, 247 (4944) : 833 - 836
  • [9] A minimal model of dynamical phase transition
    Nyawo, Pelerine Tsobgni
    Touchette, Hugo
    EPL, 2016, 116 (05)
  • [10] Time, space and equilibrium means of continuous vector functions on the phase space of a dynamical system
    Gurevich, B. M.
    Tempelman, A. A.
    SBORNIK MATHEMATICS, 2010, 201 (3-4) : 339 - 354