Surface plasmon resonance imaging biosensor based on silicon photodiode array

被引:0
|
作者
Yin, Shaoyun [1 ]
Sun, Xiuhui [1 ]
Deng, Qiling [1 ]
Xia, Liangpin [1 ]
Du, Chunlei [1 ]
机构
[1] Chinese Acad Sci, Inst Opt & Elect, State Key Lab Opt Technol Microfabricat, Chengdu 610209, Sichuan Prov, Peoples R China
来源
HOLOGRAPHY, DIFFRACTIVE OPTICS, AND APPLICATIONS IV | 2010年 / 7848卷
关键词
SPRI; Biosensor; Photodiode array;
D O I
10.1117/12.869483
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The detection limit of surface plasmon resonance imaging (SPRI) biosensor is constrained in part by the SPR biochip and in part by the resolution of the optical intensity of detecting instruments. In this paper, silicon photodiode is proposed as the optical intensity detecting element instead of the traditionally used charge coupled device (CCD), combining with high resolution analog/digital converter, this method can efficiently reduce the cost and increase the sensitivity of the SPRI system while keeping its virtue of multiple channels real time detecting. Based on this method, An SPRI experimental system with two channels is designed and the optical intensity of each channel is detected by a photodiode. By carrying out testing experiments using sucrose solution with different concentrations (corresponding to different refractive index), the system sensitivity of 10(-6) refractive index unit (RIU) is obtained.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Dual core photonic crystal fiber based surface plasmon resonance biosensor
    Paul, Alok Kumar
    Sarkar, Ajay Krishno
    Islam, Md Hafizul
    Morshed, Monir
    OPTIK, 2018, 170 : 400 - 408
  • [32] Figure of merit enhancement of surface plasmon resonance biosensor based on Talbot effect
    Shahryar Farhadi
    Ali Farmani
    Abdolsamad Hamidi
    Optical and Quantum Electronics, 2021, 53
  • [33] Design and Analysis of Circular Lattice PCF Biosensor -Based on Surface Plasmon Resonance
    Hossain, Mushfica
    Sunny, S. M. Abu Sufian
    Ahmed, Tanvir
    2021 3RD INTERNATIONAL CONFERENCE ON SUSTAINABLE TECHNOLOGIES FOR INDUSTRY 4.0 (STI), 2021,
  • [34] Determination of organophosphorous pesticides by a novel biosensor based on localized surface plasmon resonance
    Lin, Tsao-Jen
    Huang, Kuang-Tse
    Liu, Chia-Yu
    BIOSENSORS & BIOELECTRONICS, 2006, 22 (04) : 513 - 518
  • [35] Detection of Neisseria meningitidis using surface plasmon resonance based DNA biosensor
    Kaur, Gurpreet
    Paliwal, Ayushi
    Tomar, Monika
    Gupta, Vinay
    BIOSENSORS & BIOELECTRONICS, 2016, 78 : 106 - 110
  • [36] Graphene/Graphene Oxide-Based Ultrasensitive Surface Plasmon Resonance Biosensor
    Bahar Meshginqalam
    Mohammad Taghi Ahmadi
    Razali Ismail
    Arash Sabatyan
    Plasmonics, 2017, 12 : 1991 - 1997
  • [37] Graphene Coated Photonic Crystal Fiber Biosensor Based on Surface Plasmon Resonance
    Paul, Alok Kumar
    Sarkar, Ajay Krishno
    Razzak, S. M. Abdur
    2017 IEEE REGION 10 HUMANITARIAN TECHNOLOGY CONFERENCE (R10-HTC), 2017, : 856 - 859
  • [38] Black Phosphorus-Based Surface Plasmon Resonance Biosensor for DNA Hybridization
    Kumar, Rajeev
    Singh, Shivam
    Chaudhary, Bhargavi
    Kumar, Santosh
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2024, 52 (04) : 1358 - 1365
  • [39] Optical biosensor based on localized surface plasmon resonance with high spatial resolution
    Hong, X
    Kao, FJ
    PLASMONICS IN BIOLOGY AND MEDICINE, 2004, 5327 : 95 - 101
  • [40] Surface plasmon resonance-based oligonucleotide biosensor for Salmonella Typhi detection
    Fathi, Sepideh
    Jalilzadeh, Nazila
    Amini, Mohammad
    Shanebandi, Dariush
    Baradaran, Behzad
    Oroojalian, Fatemeh
    Mokhtarzadeh, Ahad
    Kesharwani, Prashant
    Sahebkar, Amirhossein
    ANALYTICAL BIOCHEMISTRY, 2023, 677