An Iterative Data-Driven Linear Quadratic Method to Solve Nonlinear Discrete-Time Tracking Problems

被引:9
|
作者
Possieri, Corrado [1 ]
Incremona, Gian Paolo [2 ]
Calafiore, Giuseppe C. [3 ,4 ]
Ferrara, Antonella [5 ]
机构
[1] CNR, Ist Anal Sistemi Informat A Ruberti, I-00185 Rome, Italy
[2] Politecn Milan, Dipartimento Elettron Informaz & Bioingn, I-20133 Milan, Italy
[3] Politecn Torino, Dipartimento Elettron & Telecomunicaz, I-10129 Turin, Italy
[4] IEIIT CNR Torino, I-10129 Turin, Italy
[5] Univ Pavia, Dipartimento Ingn Ind & Informaz, I-27100 Pavia, Italy
关键词
Optimal control; Heuristic algorithms; Dynamic programming; Approximation algorithms; Q-factor; Stochastic processes; Mathematical model; Data-driven control design; dynamic programming; linear quadratic (LQ) control; optimal control; FEEDBACK-CONTROL; REINFORCEMENT; DESIGN;
D O I
10.1109/TAC.2021.3056398
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The objective of this article is to introduce a novel data-driven iterative linear quadratic (LQ) control method for solving a class of nonlinear optimal tracking problems. Specifically, an algorithm is proposed to approximate the Q-factors arising from LQ stochastic optimal tracking problems. This algorithm is then coupled with iterative LQ-methods for determining local solutions to nonlinear optimal tracking problems in a purely data-driven setting. Simulation results highlight the potential of this method for field applications.
引用
收藏
页码:5514 / 5521
页数:8
相关论文
共 50 条
  • [41] Data-driven adaptive optimal control for discrete-time linear time-invariant systems
    Wu, Ai-Guo
    Meng, Yuan
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2024, 55 (15) : 3069 - 3082
  • [42] Data-driven finite-horizon optimal tracking control scheme for completely unknown discrete-time nonlinear systems
    Song, Ruizhuo
    Xie, Yulong
    Zhang, Zenglian
    NEUROCOMPUTING, 2019, 356 : 206 - 216
  • [43] Data-driven optimal tracking control of discrete-time linear systems with multiple delays via the value iteration algorithm
    Hao, Longyan
    Wang, Chaoli
    Zhang, Guang
    Jing, Chonglin
    Shi, Yibo
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2022, 53 (14) : 2845 - 2859
  • [44] Data-Driven Finite-Time Control for Discrete-Time Linear Time-Invariant Systems
    Li, Jinjiang
    Liu, Tao
    Liu, Tengfei
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 1595 - 1600
  • [45] Data-driven Adaptive Filtering for Fault Diagnosis of A Class of Nonlinear Discrete-time Systems
    Ji, Hongjiang
    Fan, Lingling
    Gui, Xindong
    Yin, Chenkun
    Cao, Rongmin
    PROCEEDINGS OF 2020 IEEE 9TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS'20), 2020, : 697 - 701
  • [46] Data-Driven Optimal Stabilization for Discrete-Time Nonlinear Systems by Approximate Value Iteration
    Li, Yongqiang
    Hou, Zhengsheng
    Feng, Yuanjing
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 5077 - 5082
  • [47] Data-Driven Superstabilizing Control of Error-in-Variables Discrete-Time Linear Systems
    Miller, Jared
    Dai, Tianyu
    Sznaier, Mario
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 4924 - 4929
  • [48] Data-Driven Finite-Horizon Approximate Optimal Control for Discrete-Time Nonlinear Systems Using Iterative HDP Approach
    Mu, Chaoxu
    Wang, Ding
    He, Haibo
    IEEE TRANSACTIONS ON CYBERNETICS, 2018, 48 (10) : 2948 - 2961
  • [49] LINEAR QUADRATIC OPTIMIZATION PROBLEMS FOR SOME DISCRETE-TIME STOCHASTIC LINEAR SYSTEMS
    Dragan, Vasile
    Morozan, Toader
    MATHEMATICAL REPORTS, 2009, 11 (04): : 307 - 319
  • [50] A Data-driven Optimal ILC Method Incorporated with Extended State Observer for Nonlinear Discrete-time Repetitive Systems
    Hui Yu
    Zhang Shuhua
    Chi Ronghu
    PROCEEDINGS OF 2018 IEEE 7TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS), 2018, : 77 - 80