An Iterative Data-Driven Linear Quadratic Method to Solve Nonlinear Discrete-Time Tracking Problems

被引:9
|
作者
Possieri, Corrado [1 ]
Incremona, Gian Paolo [2 ]
Calafiore, Giuseppe C. [3 ,4 ]
Ferrara, Antonella [5 ]
机构
[1] CNR, Ist Anal Sistemi Informat A Ruberti, I-00185 Rome, Italy
[2] Politecn Milan, Dipartimento Elettron Informaz & Bioingn, I-20133 Milan, Italy
[3] Politecn Torino, Dipartimento Elettron & Telecomunicaz, I-10129 Turin, Italy
[4] IEIIT CNR Torino, I-10129 Turin, Italy
[5] Univ Pavia, Dipartimento Ingn Ind & Informaz, I-27100 Pavia, Italy
关键词
Optimal control; Heuristic algorithms; Dynamic programming; Approximation algorithms; Q-factor; Stochastic processes; Mathematical model; Data-driven control design; dynamic programming; linear quadratic (LQ) control; optimal control; FEEDBACK-CONTROL; REINFORCEMENT; DESIGN;
D O I
10.1109/TAC.2021.3056398
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The objective of this article is to introduce a novel data-driven iterative linear quadratic (LQ) control method for solving a class of nonlinear optimal tracking problems. Specifically, an algorithm is proposed to approximate the Q-factors arising from LQ stochastic optimal tracking problems. This algorithm is then coupled with iterative LQ-methods for determining local solutions to nonlinear optimal tracking problems in a purely data-driven setting. Simulation results highlight the potential of this method for field applications.
引用
收藏
页码:5514 / 5521
页数:8
相关论文
共 50 条
  • [1] Distributed Data-Driven Iterative Learning Consensus Tracking for Nonlinear Discrete-Time Multiagent Systems
    Yu, Xian
    Hou, Zhongsheng
    Polycarpou, Marios M.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (07) : 3670 - 3677
  • [2] Nash Equilibria for Linear Quadratic Discrete-Time Dynamic Games via Iterative and Data-Driven Algorithms
    Nortmann, Benita
    Monti, Andrea
    Sassano, Mario
    Mylvaganam, Thulasi
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (10) : 6561 - 6575
  • [3] Data-driven tracking control for discrete-time nonlinear systems: a backward difference iterative learning approach
    Chuai, Ce
    Wang, Fuyong
    Liu, Zhongxin
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2024,
  • [4] A Data-driven Terminal Iterative Learning Control for Nonlinear Discrete-time Systems
    Chi, Ronghu
    Liu, Yu
    Hou, Zhongsheng
    Jin, Shangtai
    Wang, Danwei
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 1794 - 1798
  • [5] Data-Driven Iterative Learning Control for Nonlinear Discrete-Time MIMO Systems
    Yu, Xian
    Hou, Zhongsheng
    Polycarpou, Marios M.
    Duan, Li
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (03) : 1136 - 1148
  • [6] An Indirect Data-Driven Method for Trajectory Tracking Control of a Class of Nonlinear Discrete-Time Systems
    Wang, Zhuo
    Lu, Renquan
    Gao, Furong
    Liu, Derong
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (05) : 4121 - 4129
  • [7] Data-Driven Semi-Global Discrete-Time Nonlinear Output Tracking
    Li, Yongqiang
    Hou, Zhongsheng
    Feng, Yuangjing
    Xu, Dongwei
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 1044 - 1049
  • [8] Data-driven Optimal Preview Output Tracking of Linear Discrete-time Systems
    Liu, Zhou-Yang
    Wu, Huai-Ning
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 1973 - 1978
  • [9] A Data-Driven Adaptive Iterative Learning Predictive Control for a Class of Discrete-time Nonlinear Systems
    Sun Heqing
    Hou Zhongsheng
    PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 5871 - 5876
  • [10] Data-driven Predictive Terminal Iterative Learning Control for a Class of Discrete-time Nonlinear Systems
    Jin Shangtai
    Hou Zhongsheng
    Chi Ronghu
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 2992 - 2996