Carleman estimates and controllability results for fully discrete approximations of 1D parabolic equations

被引:7
|
作者
Gonzalez Casanova, Pedro [1 ]
Hernandez-Santamaria, Victor [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
关键词
Carleman estimates; Fully discrete parabolic equations; Observability; Null controllability; ELLIPTIC-OPERATORS; NULL;
D O I
10.1007/s10444-021-09885-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove a Carleman estimate for fully discrete approximations of one-dimensional parabolic operators in which the discrete parameters h and ot are connected to the large Carleman parameter. We use this estimate to obtain relaxed observability inequalities which yield, by duality, controllability results for fully discrete linear and semilinear parabolic equations.
引用
收藏
页数:71
相关论文
共 50 条
  • [1] Carleman estimates and controllability results for fully discrete approximations of 1D parabolic equations
    Pedro González Casanova
    Víctor Hernández-Santamaría
    Advances in Computational Mathematics, 2021, 47
  • [2] Carleman estimates for time-discrete parabolic equations and applications to controllability*
    Boyer, Franck
    Hernandez-Santamaria, Victor
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2020, 26
  • [3] Discrete Carleman estimates and application to controllability for a fully-discrete parabolic operator with dynamic boundary conditions
    Lecaros, Rodrigo
    Morales, Roberto
    Perez, Ariel
    Zamorano, Sebastian
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 365 : 832 - 881
  • [4] Carleman estimates and null controllability of a class of singular parabolic equations
    Du, Runmei
    Eichhorn, Jurgen
    Liu, Qiang
    Wang, Chunpeng
    ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) : 1057 - 1082
  • [5] Discrete Carleman estimates for elliptic operators and uniform controllability of semi-discretized parabolic equations
    Boyer, Franck
    Hubert, Florence
    Le Rousseau, Jerome
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 93 (03): : 240 - 276
  • [6] OPTIMAL ERROR ESTIMATES FOR FULLY DISCRETE GALERKIN APPROXIMATIONS OF SEMILINEAR PARABOLIC EQUATIONS
    Meidner, Dominik
    Vexler, Boris
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 52 (06): : 2307 - 2325
  • [7] Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations
    Boyer, Franck
    Le Rousseau, Jerome
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (05): : 1035 - 1078
  • [8] A posteriori error estimates for fully discrete fractional-step υ-approximations for parabolic equations
    Karakatsani, Fotini
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (03) : 1334 - 1361
  • [9] CARLEMAN ESTIMATES AND NULL CONTROLLABILITY FOR A CLASS OF DEGENERATE PARABOLIC EQUATIONS WITH CONVECTION TERMS
    Wang, Chunpeng
    Du, Runmei
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (03) : 1457 - 1480
  • [10] Carleman estimates and controllability for a semi-discrete fourth-order parabolic equation
    Cerpa, Eduardo
    Lecaros, Rodrigo
    Nguyen, Thuy N. T.
    Perez, Ariel
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 164 : 93 - 130