On a product operator from weighted Bergman-Nevanlinna spaces to weighted Zygmund spaces

被引:2
|
作者
Jiang, Zhi-jie [1 ]
机构
[1] Sichuan Univ Sci & Engn, Inst Nonlinear Sci & Engn Comp, Zigong 643000, Sichuan, Peoples R China
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2014年
基金
中国国家自然科学基金;
关键词
weighted Bergman-Nevanlinna space; product operator; weighted Zygmund space; little weighted Zygmund space; BLOCH-TYPE SPACES; H-INFINITY; DIFFERENTIATION OPERATORS; NORM; HARDY;
D O I
10.1186/1029-242X-2014-404
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let D = {z epsilon C: vertical bar Z vertical bar < 1} be the open unit disk, co an analytic self-map of D and psi an analytic function in D. Let D be the differentiation operator and W-phi,W-psi the weighted composition operator. The boundedness and compactness of the product operator DW phi,psi from weighted Bergman-Nevanlinna spaces to weighted Zygmund spaces on D are characterized.
引用
收藏
页数:14
相关论文
共 50 条