共 7 条
High-frequency repetitive transcranial magnetic stimulation (rTMS) protects against ischemic stroke by inhibiting M1 microglia polarization through let-7b-5p/HMGA2/NF-κB signaling pathway
被引:22
|作者:
Hong, Ye
[1
]
Lyu, Jinfeng
[1
]
Zhu, Lin
[1
]
Wang, Xixi
[1
]
Peng, Mengna
[2
]
Chen, Xiangliang
[1
]
Deng, Qiwen
[1
]
Gao, Jie
[1
]
Yuan, Zhenhua
[1
]
Wang, Di
[2
]
Xu, Gelin
[2
]
Xu, Mengyi
[1
]
机构:
[1] Nanjing Med Univ, Nanjing Hosp 1, Dept Neurol, 68 Changle Rd, Nanjing 210029, Jiangsu, Peoples R China
[2] Nanjing Univ, Jinling Hosp, Med Sch, Dept Neurol, Nanjing 210002, Jiangsu, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Ischemic stroke;
Microglia polarization;
rTMS;
Let-7b-5p;
HMGA2;
NF-kappa B;
CEREBRAL-ISCHEMIA;
ACTIVATION;
DIFFERENTIATION;
INFLAMMATION;
MACROPHAGES;
CELLS;
HMGA2;
D O I:
10.1186/s12868-022-00735-7
中图分类号:
Q189 [神经科学];
学科分类号:
071006 ;
摘要:
Background: Microglia assume opposite phenotypes in response to ischemic brain injury, exerting neurotoxic and neuroprotective effects under different ischemic stages. Modulating M1/M2 polarization is a potential therapy for treating ischemic stroke. Repetitive transcranial magnetic stimulation (rTMS) held the capacity to regulate neuroinflammation and astrocytic polarization, but little is known about rTMS effects on microglia. Therefore, the present study aimed to examine the rTMS influence on microglia polarization and the underlying possible molecular mechanisms in ischemic stroke models. Methods: Previously reported 10 Hz rTMS protocol that regulated astrocytic polarization was used to stimulate transient middle cerebral artery occlusion (MCAO) rats and oxygen and glucose deprivation/reoxygenation (OGD/R) injured BV2 cells. Specific expression levels of M1 marker iNOS and M2 marker CD206 were measured by western blotting and immunofluorescence. MicroRNA expression changes detected by high-throughput second-generation sequencing were validated by RT-PCR and fluorescence in situ hybridization (FISH) analysis. Dual-luciferase report assay and miRNA knock-down were applied to verify the possible mechanisms regulated by rTMS. Microglia culture medium (MCM) from different groups were collected to measure the TNF-alpha and IL-10 concentrations, and detect the influence on neuronal survival. Finally, TTC staining and modified Neurological Severity Score (mNSS) were used to determine the effects of MCM on ischemic stroke volume and neurological functions. Results: The 10 Hz rTMS inhibited ischemia/reperfusion induced M1 microglia and significantly increased let-7b-5p level in microglia. HMGA2 was predicted and proved to be the target protein of let-7b-5p. HMGA2 and its downstream NF-kappa B signaling pathway were inhibited by rTMS. Microglia culture medium (MCM) collected from rTMS treated microglia contained lower INF-alpha concentration but higher IL-10 concentration than no rTMS treated MCM, reducing ischemic volumes and neurological deficits of MCAO mice. However, knockdown of let-7b-5p by antagomir reversed rTMS effects on microglia phenotype and associated HMGA/NF-kappa B activation and neurological recovery. Conclusion: High-frequency rTMS could alleviate ischemic stroke injury through inhibiting M1 microglia polarization via regulating let-7b-5p/HMGA2/NF-kappa B signaling pathway in MCAO models.
引用
收藏
页数:15
相关论文