Impact of Shutdown Procedures on Recovery Phenomena of Proton Exchange Membrane Fuel Cells

被引:13
作者
Pivac, I. [1 ,2 ]
Barbir, F. [1 ,2 ]
机构
[1] Univ Split, FESB, R Boskovica 32, Split 21000, Croatia
[2] Univ Split, Ctr Excellence STIM, Poljicka Cesta 35, Split 21000, Croatia
基金
欧盟地平线“2020”;
关键词
Fuel Cells; Proton Exchange Membranes; Recovery; Regeneration; Reversible Degradation; IRREVERSIBLE DEGRADATION; PERFORMANCE LOSS; MECHANISMS; CATALYST;
D O I
10.1002/fuce.201900174
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The paper presents the obtained measurement and analysis results of the accelerated stress test protocols consisting of voltage cycling, designed to target electrocatalyst degradation, with the intentional recovery periods (so-called soak time steps) every 2,500 voltage cycles on an already conditioned 50 cm(2) (single) fuel cell provided by ElringKlinger. Before and after every intentional stop, a series of diagnostic methods (polarization curves, electrochemical impedance spectroscopy, cyclic voltammetry, linear sweep voltammetry) were performed. During the conducted durability test, different shutdown procedures, as well as different duration of the soak time period were tested with their impact on performance recovery phenomenon. The results suggest that cause of the reversible degradation could be accumulated water within the cell and/or presence of oxygen within the catalyst layer leading to formation of platinum oxides on the catalyst surface. The prolonged soak time step reduces recovery effect, while rapid reduction of the cell temperature with ice proved to be counterproductive for performance recovery. Shutdown procedure without shortly-connected resistor has shown no effect on recovery. Shutdown procedure without nitrogen purge proved to be the most effective for performance recovery.
引用
收藏
页码:185 / 195
页数:11
相关论文
共 22 条
  • [21] Recovery mechanisms in proton exchange membrane fuel cells after accelerated stress tests
    Zhang, Xu
    Guo, Liejin
    Liu, Hongtan
    [J]. JOURNAL OF POWER SOURCES, 2015, 296 : 327 - 334
  • [22] Study of the degradation mechanisms of carbon-supported platinum fuel cells catalyst via different accelerated stress test
    Zhang, Yuanliang
    Chen, Siguo
    Wang, Yao
    Ding, Wei
    Wu, Rui
    Li, Li
    Qi, Xueqiang
    Wei, Zidong
    [J]. JOURNAL OF POWER SOURCES, 2015, 273 : 62 - 69