Viscoelastic and mechanical properties of multi walled carbon nanotube/epoxy composites with different nanotube content

被引:125
作者
Montazeri, Arash [1 ]
Montazeri, Nasser [1 ]
机构
[1] Islamic Azad Univ, Tonekabon Branch, Dept Chem, Tonekabon, Iran
来源
MATERIALS & DESIGN | 2011年 / 32卷 / 04期
关键词
Multi walled carbon nanotubes; Nanocomposites; Viscoelastic properties; ELECTRICAL-PROPERTIES; EPOXY COMPOSITES; DISPERSION PROCESS; NANOCOMPOSITES; BEHAVIOR; MATRIX; FABRICATION;
D O I
10.1016/j.matdes.2010.11.003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The viscoelastic and mechanical properties of composites multi walled carbon nanotube (MWNT)/epoxy at different weight fractions (0.1, 0.5, 1 and 2 wt.%) were evaluated by performing tensile and dynamic-mechanical thermal analysis (DMTA) tests. The MWNT/epoxy composite were fabricated by sonication and a cast molding process. The results showed that addition of nanotubes to epoxy had significant effect on the viscoelastic and mechanical properties. However, the use of 0.5 wt.% increased the viscoelastic properties more significantly. Concerning viscoelastic modeling, the COLE-COLE diagram has been plotted by the results of DMTA test. These results show a good agreement between the Perez model and the viscoelastic behavior of the composite. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2301 / 2307
页数:7
相关论文
共 36 条
[1]   Mechanical and electrical properties of a MWNT/epoxy composite [J].
Allaoui, A ;
Bai, S ;
Cheng, HM ;
Bai, JB .
COMPOSITES SCIENCE AND TECHNOLOGY, 2002, 62 (15) :1993-1998
[2]  
*ASTM, 1996, D638 ASTM
[3]   Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites - experimental investigation [J].
Bai, JB ;
Allaoui, A .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2003, 34 (08) :689-694
[4]   COBALT-CATALYZED GROWTH OF CARBON NANOTUBES WITH SINGLE-ATOMIC-LAYERWALLS [J].
BETHUNE, DS ;
KIANG, CH ;
DEVRIES, MS ;
GORMAN, G ;
SAVOY, R ;
VAZQUEZ, J ;
BEYERS, R .
NATURE, 1993, 363 (6430) :605-607
[5]   Properties of carbon nanotube-polymer composites aligned in a magnetic field [J].
Camponeschi, Erin ;
Vance, Richard ;
Al-Haik, Marwan ;
Garmestani, Hamid ;
Tannenbaum, Rina .
CARBON, 2007, 45 (10) :2037-2046
[6]   The reinforcement role of carbon nanotubes in epoxy composites with different matrix stiffness [J].
Ci, LJ ;
Bai, JC .
COMPOSITES SCIENCE AND TECHNOLOGY, 2006, 66 (3-4) :599-603
[7]   Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy [J].
Cooper, CA ;
Young, RJ ;
Halsall, M .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2001, 32 (3-4) :401-411
[8]   Characterization of multiwall carbon nanotubes and influence of surfactant in the nanocomposite processing [J].
Cui, S ;
Canet, R ;
Derre, A ;
Couzi, M ;
Delhaes, P .
CARBON, 2003, 41 (04) :797-809
[9]  
Ferry J. D., 1961, Viscoelastic properties of polymers
[10]   Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites [J].
Fidelus, JD ;
Wiesel, E ;
Gojny, FH ;
Schulte, K ;
Wagner, HD .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2005, 36 (11) :1555-1561