MAP model selection in Gaussian regression

被引:18
|
作者
Abramovich, Felix [1 ]
Grinshtein, Vadim [2 ]
机构
[1] Tel Aviv Univ, Dept Stat & Operat Res, IL-69978 Tel Aviv, Israel
[2] Open Univ Israel, Dept Math, IL-43107 Raanana, Israel
来源
基金
以色列科学基金会;
关键词
Adaptivity; complexity penalty; Gaussian linear regression; maximum a posteriori rule; minimax estimation; model selection; oracle inequality; sparsity; STATISTICAL ESTIMATION; BAYESIAN TESTIMATION;
D O I
10.1214/10-EJS573
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a Bayesian approach to model selection in Gaussian linear regression, where the number of predictors might be much larger than the number of observations. From a frequentist view, the proposed procedure results in the penalized least squares estimation with a complexity penalty associated with a prior on the model size. We investigate the optimality properties of the resulting model selector. We establish the oracle inequality and specify conditions on the prior that imply its asymptotic minimaxity within a wider range of sparse and dense settings for "nearly-orthogonal" and "multicollinear" designs.
引用
收藏
页码:932 / 949
页数:18
相关论文
共 50 条
  • [41] The Gaussian Process Autoregressive Regression Model (GPAR)
    Requeima, James
    Tebbutt, Will
    Bruinsma, Wessel
    Turner, Richard E.
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [42] MODEL SELECTION FOR GAUSSIAN MIXTURE MODELS
    Huang, Tao
    Peng, Heng
    Zhang, Kun
    STATISTICA SINICA, 2017, 27 (01) : 147 - 169
  • [43] Minimal penalties for Gaussian model selection
    Birge, Lucien
    Massart, Pascal
    PROBABILITY THEORY AND RELATED FIELDS, 2007, 138 (1-2) : 33 - 73
  • [44] Robust regression for mixed Poisson–Gaussian model
    Marie Kubínová
    James G. Nagy
    Numerical Algorithms, 2018, 79 : 825 - 851
  • [45] Minimal Penalties for Gaussian Model Selection
    Lucien Birgé
    Pascal Massart
    Probability Theory and Related Fields, 2007, 138 : 33 - 73
  • [46] Model selection for Gaussian concentration graphs
    Drton, M
    Perlman, MD
    BIOMETRIKA, 2004, 91 (03) : 591 - 602
  • [47] Diagnostic techniques for the inverse Gaussian regression model
    Amin, Muhammad
    Ullah, Muhammad Aman
    Qasim, Muhammad
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (08) : 2552 - 2564
  • [48] Robust Gaussian process regression with a bias model
    Park, Chiwoo
    Borth, David J.
    Wilson, Nicholas S.
    Hunter, Chad N.
    Friedersdorf, Fritz J.
    PATTERN RECOGNITION, 2022, 124
  • [49] Model Learning with Local Gaussian Process Regression
    Nguyen-Tuong, Duy
    Seeger, Matthias
    Peters, Jan
    ADVANCED ROBOTICS, 2009, 23 (15) : 2015 - 2034
  • [50] Estimation of Gaussian graphs by model selection
    Giraud, Christophe
    ELECTRONIC JOURNAL OF STATISTICS, 2008, 2 : 542 - 563