MAP model selection in Gaussian regression

被引:18
|
作者
Abramovich, Felix [1 ]
Grinshtein, Vadim [2 ]
机构
[1] Tel Aviv Univ, Dept Stat & Operat Res, IL-69978 Tel Aviv, Israel
[2] Open Univ Israel, Dept Math, IL-43107 Raanana, Israel
来源
基金
以色列科学基金会;
关键词
Adaptivity; complexity penalty; Gaussian linear regression; maximum a posteriori rule; minimax estimation; model selection; oracle inequality; sparsity; STATISTICAL ESTIMATION; BAYESIAN TESTIMATION;
D O I
10.1214/10-EJS573
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a Bayesian approach to model selection in Gaussian linear regression, where the number of predictors might be much larger than the number of observations. From a frequentist view, the proposed procedure results in the penalized least squares estimation with a complexity penalty associated with a prior on the model size. We investigate the optimality properties of the resulting model selector. We establish the oracle inequality and specify conditions on the prior that imply its asymptotic minimaxity within a wider range of sparse and dense settings for "nearly-orthogonal" and "multicollinear" designs.
引用
收藏
页码:932 / 949
页数:18
相关论文
共 50 条
  • [31] On model selection in Bayesian regression
    Mostofi, Amin Ghalamfarsa
    Behboodian, Javad
    METRIKA, 2007, 66 (03) : 259 - 268
  • [32] A Support Set Selection Algorithm for Sparse Gaussian Process Regression
    Guo, Xinlu
    Uehara, Kuniaki
    2015 IIAI 4TH INTERNATIONAL CONGRESS ON ADVANCED APPLIED INFORMATICS (IIAI-AAI), 2015, : 568 - 573
  • [33] Greedy forward selection algorithms to sparse Gaussian process regression
    Sun, Ping
    Yao, Xin
    2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 159 - +
  • [34] Variable selection for Gaussian process regression through a sparse projection
    Park, Chiwoo
    Borth, David J.
    Wilson, Nicholas S.
    Hunter, Chad N.
    IISE TRANSACTIONS, 2022, 54 (07) : 699 - 712
  • [35] A Model Selection Strategy of Gaussian Process Regression for Modeling Inset-Fed Microstrip Patch Antenna
    Ferroudji, Karim
    Reddaf, Abdelmaled
    Bouchachi, Islem
    Mounir, Boudjerda
    INTERNATIONAL TELECOMMUNICATIONS CONFERENCE, ITELCON 2017, 2019, 504 : 75 - 87
  • [36] Probabilistic Nonparametric Model: Gaussian Process Regression
    不详
    IEEE CONTROL SYSTEMS MAGAZINE, 2023, 43 (05): : 162 - 163
  • [37] A novel Gaussian processes model for regression and prediction
    Zhou, Yatong
    Zhang, Taiyi
    Lu, Zhaogan
    APPLIED ARTIFICIAL INTELLIGENCE, 2006, : 154 - +
  • [38] A Gaussian Process Regression Model for Distribution Inputs
    Bachoc, Francois
    Gamboa, Fabrice
    Loubes, Jean-Michel
    Venet, Nil
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (10) : 6620 - 6637
  • [39] The KL estimator for the inverse Gaussian regression model
    Lukman, Adewale F.
    Algannal, Zakariya Y.
    Kibria, B. M. Golam
    Ayinde, Kayode
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (13):
  • [40] Using a Gaussian Process as a Nonparametric Regression Model
    Gattiker, J. R.
    Hamada, M. S.
    Higdon, D. M.
    Schonlau, M.
    Welch, W. J.
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2016, 32 (02) : 673 - 680