Engineering interfacial layers to enable Zn metal anodes for aqueous zinc-ion batteries

被引:210
|
作者
He, Huibing [1 ,2 ]
Qin, Hongyu [1 ]
Wu, Jia [1 ]
Chen, Xingfa [1 ]
Huang, Renshu [1 ]
Shen, Fang [1 ,2 ]
Wu, Zhenrui [3 ]
Chen, Guoning [2 ]
Yin, Shibin [1 ]
Liu, Jian [3 ]
机构
[1] Guangxi Univ, Sch Chem & Chem Engn, Guangxi Key Lab Electrochem Energy Mat, Nanning 530004, Peoples R China
[2] Guangxi Bossco Environm Protect Technol Co Ltd, Nanning 530007, Peoples R China
[3] Univ British Columbia, Fac Appl Sci, Sch Engn, Kelowna, BC V1V 1V7, Canada
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
Zinc ion batteries; Zn anode; Aqueous electrolyte; Dendrite-free; Interfacial layer; CARBON NANOTUBE NETWORK; BINDER-FREE ELECTRODE; DENDRITE FORMATION; LONG-LIFE; CATHODE MATERIALS; RECENT PROGRESS; HIGH-CAPACITY; PERFORMANCE; DEPOSITION; STRATEGIES;
D O I
10.1016/j.ensm.2021.09.012
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rechargeable aqueous zinc-ion batteries (ZIBs) have attracted increasing attention as promising energy storage devices in large-scale energy storage systems due to their low cost, high capacity, and inherent safety. However, the poor reversibility of zinc anodes has largely restricted their further development because of the dendrite growth, surface passivation, and hydrogen evolution problems associated with Zn metal anodes during the repeated plating/stripping cycles. Surface engineering with functional protection layer appears to be an effective means to mitigate Zn dendrite issues. We first introduce zinc electrochemistry in mild/neutral environments and elaborate Zn anode degradation mechanism. Then, we give state-of-the-art research progress and provide a specific, comprehensive, and in-depth summary of the mechanisms of different coating materials, and share some examples of advanced characterizations for an in-depth understanding on the working mechanisms of the coating layers. Finally, we propose a design principle for the structural design of an ideal interface layer on the Zn metal and share perspectives. This review would give rise to a broad interest focusing on commercial Zn foils in the community of ZIBs, bring potential ideas and inspiration in surface engineering strategies for the rational design of dendrite-free Zn anodes, and boost the development of advanced aqueous ZIBs with low cost and inherent safety.
引用
收藏
页码:317 / 336
页数:20
相关论文
共 50 条
  • [31] Issues and opportunities facing aqueous zinc-ion batteries
    Tang, Boya
    Shan, Lutong
    Liang, Shuquan
    Zhou, Jiang
    ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (11) : 3288 - 3304
  • [32] Critical roles of metal-organic frameworks in improving the Zn anode in aqueous zinc-ion batteries
    Gopalakrishnan, Mohan
    Ganesan, Sunantha
    Nguyen, Mai Thanh
    Yonezawa, Tetsu
    Praserthdam, Supareak
    Pornprasertsuk, Rojana
    Kheawhom, Soorathep
    CHEMICAL ENGINEERING JOURNAL, 2023, 457
  • [33] Functional Oriented Design of Composite Artificial Interface Layers Towards Stable Zinc Anodes In Aqueous Zinc-ion Batteries
    Zhang, Xiaoyu
    Jin, Weihua
    Liu, Min
    Zhao, Yong
    Zhang, Peng
    BATTERIES & SUPERCAPS, 2024, 7 (01)
  • [34] Challenges and Strategies for Constructing Highly Reversible Zinc Anodes in Aqueous Zinc-Ion Batteries: Recent Progress and Future Perspectives
    Yu, Yanxia
    Xu, Wei
    Liu, Xiaoqing
    Lu, Xihong
    ADVANCED SUSTAINABLE SYSTEMS, 2020, 4 (09)
  • [35] Issues and solutions toward zinc anode in aqueous zinc-ion batteries: A mini review
    Xie, Chunlin
    Li, Yihu
    Wang, Qi
    Sun, Dan
    Tang, Yougen
    Wang, Haiyan
    CARBON ENERGY, 2020, 2 (04) : 540 - 560
  • [36] Functionalization design of zinc anode for advanced aqueous zinc-ion batteries
    Feng, Ziyi
    Feng, Yang
    Fan, Fangfang
    Deng, Dezhao
    Dong, Han
    Liu, Shude
    Kang, Ling
    Jun, Seong Chan
    Wang, Ling
    Zhu, Jing
    Dai, Lei
    He, Zhangxing
    SUSMAT, 2024, 4 (02):
  • [37] An Overview of Challenges and Strategies for Stabilizing Zinc Anodes in Aqueous Rechargeable Zn-Ion Batteries
    Thieu, Nhat Anh
    Li, Wei
    Chen, Xiujuan
    Hu, Shanshan
    Tian, Hanchen
    Tran, Ha Ngoc Ngan
    Li, Wenyuan
    Reed, David M.
    Li, Xiaolin
    Liu, Xingbo
    BATTERIES-BASEL, 2023, 9 (01):
  • [38] Sustainable wood-derived carbon anodes enable high-rate and long-cycle aqueous zinc-ion batteries
    Gao, Yulin
    Jiang, Hanmei
    Sun, Jianguo
    Liu, Yu
    Pan, Zhenghui
    Liu, Zhaolin
    Wang, John
    JOURNAL OF ENERGY STORAGE, 2024, 94
  • [39] Separators in aqueous zinc-ion batteries: Interfacial chemistry and optimization strategies
    Yang, Lu
    Zhou, Miao
    Xie, Yijian
    Shen, Xiaoyi
    Liang, Shuquan
    Fang, Guozhao
    ENERGY STORAGE MATERIALS, 2024, 67
  • [40] Direct Self-Assembly of MXene on Zn Anodes for Dendrite-Free Aqueous Zinc-Ion Batteries
    Zhang, Nannan
    Huang, Shuo
    Yuan, Zishun
    Zhu, Jiacai
    Zhao, Zifang
    Niu, Zhiqiang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (06) : 2861 - 2865