Charge/discharge behavior of Li[Ni0.20U0.20Mn0.60]O2 and Li[Co0.20Li0.27Mn0.53]O2 cathode materials in lithium secondary batteries

被引:57
作者
Hong, YS [1 ]
Park, YJ [1 ]
Ryu, KS [1 ]
Chang, SH [1 ]
机构
[1] Elect & Telecommun Res Inst, Ion Device Team, Taejon 305350, South Korea
关键词
lithium secondary battery; cathode;
D O I
10.1016/j.ssi.2005.02.006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Layered cathode materials Li[Ni0.20Li0.20Mn0.6]O-2 and Li[Co0.20Li0.27Mn0.53]O-2 were prepared by a simple combustion method and their structural changes on charge/discharge cycling were investigated by ex situ X-ray diffraction (XRD) method and galvanostatic charge/discharge cycling. Rietveld refinement showed that both compounds adopt the same crystal structure, isostructural with Li2MnO3. A structural difference is that a small amount of Ni2+ ions occupies the lithium layers, resulting in [Li0.98Ni0.02](3a)[Ni0.18Li0.22Mn0.60](3b)[O-2](6c), while all the Co3+ ions the transition metal layers. After the 1st charge, the crystal structure of Li[Co0.20Li0.27Mn0.53]O-2 was transformed from layered into spinel phase. Interestingly, the Li[Co0.20Li0.27Mn0.53]O-2 exhibited an exceptionally high 1st charge capacity of 360 mA h/g and large irreversible capacity loss of 153 mA h/g. The discharge capacity of Li[Co0.20Li0.27Mn0.53]O-2 was also largely decreased from 207 to 110 mA h/g at the 30th cycle while that of Li[Ni0.20Li0.20Mn0.60]O-2 was stabilized from 288 to 213 m Ah/g. These results indicate the charge/discharge process is clearly different from each other and related to the structural difference. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:1035 / 1042
页数:8
相关论文
共 22 条
  • [1] Structural change of Li1-xNi0.5Mn0.5O2 cathode materials for lithium-ion batteries by synchrotron radiation
    Arachi, Y
    Kobayashi, H
    Emura, S
    Nakata, Y
    Tanaka, M
    Asai, T
    [J]. CHEMISTRY LETTERS, 2003, 32 (01) : 60 - 61
  • [2] Electronically conductive phospho-olivines as lithium storage electrodes
    Chung, SY
    Bloking, JT
    Chiang, YM
    [J]. NATURE MATERIALS, 2002, 1 (02) : 123 - 128
  • [3] Lithium ion cells using a new high capacity cathode
    Grincourt, Y
    Storey, C
    Davidson, IJ
    [J]. JOURNAL OF POWER SOURCES, 2001, 97-8 : 711 - 713
  • [4] SPINEL VERSUS LAYERED STRUCTURES FOR LITHIUM COBALT OXIDE SYNTHESIZED AT 400-DEGREES-C
    GUMMOW, RJ
    LILES, DC
    THACKERAY, MM
    [J]. MATERIALS RESEARCH BULLETIN, 1993, 28 (03) : 235 - 246
  • [5] New iron-containing electrode materials for lithium secondary batteries
    Hong, YS
    Ryu, KS
    Chang, SH
    [J]. ETRI JOURNAL, 2003, 25 (05) : 412 - 417
  • [6] Synthesis and electrochemical properties of nanocrystalline Li[Ni0.20Li0.20Mn0.60]O2
    Hong, YS
    Park, YJ
    Wu, XL
    Ryu, KS
    Chang, SH
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (08) : A166 - A169
  • [7] Electrochemical and ex situ X-ray study of Li-(Li0.2Ni0.2Mn0.6)O2 cathode material for Li secondary batteries
    Kang, SH
    Sun, YK
    Amine, K
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (09) : A183 - A186
  • [8] Structural characterization of Li[Li0.1Ni0.35Mn0.55]O2 cathode material for lithium secondary batteries
    Kim, JH
    Yoon, CS
    Sun, YK
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (04) : A538 - A542
  • [9] Layered cathode materials Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 for lithium-ion batteries
    Lu, ZH
    MacNeil, DD
    Dahn, JR
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (11) : A191 - A194
  • [10] Synthesis, structure, and electrochemical behavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O2
    Lu, ZH
    Beaulieu, LY
    Donaberger, RA
    Thomas, CL
    Dahn, JR
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (06) : A778 - A791