Correlation-space description of the percolation transition in composite microstructures

被引:27
作者
Frary, Megan E. [1 ]
Schuh, Christopher A. [1 ,2 ]
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[2] Boise State Univ, Dept Mat Sci & Engn, Boise, ID 83725 USA
来源
PHYSICAL REVIEW E | 2007年 / 76卷 / 04期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevE.76.041108
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We explore the percolation threshold shift as short-range correlations are introduced and systematically varied in binary composites. Two complementary representations of the correlations are developed in terms of the distribution of phase bonds or, alternatively, using a set of appropriate short-range order parameters. In either case, systematic exploration of the correlation space reveals a boundary that separates percolating from nonpercolating structures and permits empirical equations that identify the location of the threshold for systems of arbitrary short-range correlation states. Two- and three-dimensional site lattices with two-body correlations, as well as a two-dimensional hexagonal bond network with three-body correlations, are explored. The approach presented here should be generalizable to more complex correlation states, including higher-order and longer-range correlations.
引用
收藏
页数:10
相关论文
共 79 条
[1]   Scaling corrections:: site percolation and Ising model in three dimensions [J].
Ballesteros, HG ;
Fernández, LA ;
Martín-Mayor, V ;
Sudupe, AM ;
Parisi, G ;
Ruiz-Lorenzo, JJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (01) :1-13
[2]   Bond percolation on a dilute lattice with short and long range correlations: A numerical simulation [J].
Bauerschafer, U ;
Schulz, M .
PHYSICAL REVIEW E, 1996, 54 (02) :1442-1448
[3]   2-DIMENSIONAL AND 3-DIMENSIONAL SITE-BOND-CORRELATED PERCOLATION [J].
BRANCO, NS ;
MACHADO, KD .
PHYSICAL REVIEW B, 1993, 47 (01) :493-496
[4]  
Bréchet Y, 2001, ADV ENG MATER, V3, P571, DOI 10.1002/1527-2648(200108)3:8<571::AID-ADEM571>3.0.CO
[5]  
2-M
[6]   DISPERSED IONIC CONDUCTORS AND PERCOLATION THEORY [J].
BUNDE, A ;
DIETERICH, W ;
ROMAN, E .
PHYSICAL REVIEW LETTERS, 1985, 55 (01) :5-8
[7]   Cluster-size statistics of site-bond-correlated percolation models [J].
Campos, PRA ;
Pessoa, LFC ;
Moreira, FGB .
PHYSICAL REVIEW B, 1997, 56 (01) :40-42
[8]   To what extent is the structure of a random composite compatible with a percolation model? [J].
Carmona, F ;
Ravier, J .
PHYSICA B-CONDENSED MATTER, 2003, 338 (1-4) :247-251
[9]   UNIVERSALITY, THRESHOLDS AND CRITICAL EXPONENTS IN CORRELATED PERCOLATION [J].
CHAVES, CM ;
KOILLER, B .
PHYSICA A, 1995, 218 (3-4) :271-278
[10]   Diffusion on grain boundary networks: Percolation theory and effective medium approximations [J].
Chen, Ying ;
Schuh, Christopher A. .
ACTA MATERIALIA, 2006, 54 (18) :4709-4720