Functional biology of halophytes in the phytoremediation of heavy metal contaminated soils

被引:140
|
作者
Van Oosten, Michael James [1 ]
Maggio, Albino [1 ]
机构
[1] Univ Naples Federico II, Dept Agr Sci, I-80055 Portici, Italy
关键词
Halophytes; Phytoremediation; Phytoextraction; Phytostabilization; Phytoexcretion; Heavy metals; Salt toleranc; POLYCYCLIC AROMATIC-HYDROCARBONS; SALT-AFFECTED SOIL; MESEMBRYANTHEMUM-CRYSTALLINUM; SESUVIUM-PORTULACASTRUM; SPARTINA-ALTERNIFLORA; ENHANCED PHYTOEXTRACTION; KOSTELETZKYA-VIRGINICA; CALCIUM-OXALATE; HALIMIONE-PORTULACOIDES; SALINITY TOLERANCE;
D O I
10.1016/j.envexpbot.2014.11.010
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Halophytic plants are characterized by their ability to survive, even thrive, at concentrations of sodium and chloride ions that would be toxic to most crop species. Given the diminishing prospects for the availability of fresh water for agriculture, halophytes represent an important resource for both our understanding of the fundamental physiological mechanisms in salt stress adaptation and utilization of saline waters for agriculture. Mechanisms of adaptation that allow halophytes to survive high salt concentrations may be not exclusive to sodium and chloride and may confer tolerance to other toxic ions, including the loosely defined family of heavy metals. It has been recently shown that a number of these halophytes do indeed have ability to accumulate heavy metals or tolerate high levels of toxic ions in the environment. These abilities make some halophytes excellent candidates for phytoextraction and phytostabilization of heavy metals in contaminated soils. This review addresses the general deleterious effects of heavy metals in plants, present known mechanisms of adaptation to heavy metal stress in halophytes and discusses the potential of halophytes for phytoremediation of contaminated soils. Considering the multifaceted potential of halophytes for biomass production in marginal and/or extreme environments, their potential role in the broader context of agriculture and food security should be further explored. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:135 / 146
页数:12
相关论文
共 50 条
  • [31] Halophyte Halogeton glomeratus, a promising candidate for phytoremediation of heavy metal-contaminated saline soils
    Baochun Li
    Juncheng Wang
    Lirong Yao
    Yaxiong Meng
    Xiaole Ma
    Erjing Si
    Panrong Ren
    Ke Yang
    Xunwu Shang
    Huajun Wang
    Plant and Soil, 2019, 442 : 323 - 331
  • [32] Establishment of in vitro plants selected from heavy metal contaminated soils for further phytoremediation use
    Pistelli, L.
    D'Angiolillo, F.
    Bortolazzo, M.
    Morelli, E.
    Basso, B.
    VI INTERNATIONAL SYMPOSIUM ON PRODUCTION AND ESTABLISHMENT OF MICROPROPAGATED PLANTS, 2017, 1155 : 599 - 606
  • [33] Phytoremediation of heavy metal-contaminated soils: Natural hyperaccumulation versus chemically enhanced phytoextraction
    Lombi, E
    Zhao, FJ
    Dunham, SJ
    McGrath, SP
    JOURNAL OF ENVIRONMENTAL QUALITY, 2001, 30 (06) : 1919 - 1926
  • [34] PHYTOREMEDIATION OF CONTAMINATED SOILS
    CUNNINGHAM, SD
    BERTI, WR
    HUANG, JWW
    TRENDS IN BIOTECHNOLOGY, 1995, 13 (09) : 393 - 397
  • [35] Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review
    Mahar, Amanullah
    Wang, Ping
    Ali, Amjad
    Awasthi, Mukesh Kumar
    Lahori, Altaf Hussain
    Wang, Quan
    Li, Ronghua
    Zhang, Zengqiang
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2016, 126 : 111 - 121
  • [36] Enhanced Immobilization and Phytoremediation of Heavy Metals in Landfill Contaminated Soils
    Elbehiry, Fathy
    Elbasiouny, Heba
    Ali, Rafaat
    Brevik, Eric C.
    WATER AIR AND SOIL POLLUTION, 2020, 231 (05):
  • [37] Phytoremediation of contaminated soils
    Morel, JL
    ACTUALITE CHIMIQUE, 2002, (8-9): : 63 - 66
  • [38] Phytoremediation with Brassicaceae and Apiaceae in soils contaminated with heavy metals.
    Salamanca-Rivera, Angela Patricia
    Silva, Diego Alejandro
    Cardozo-Munoz, Juan
    Rojas-Sanchez, Fabian
    Melendez-Mazabel, Juan Camilo
    Borda-Chingate, Luis Santiago
    REVISTA DE BIOLOGIA TROPICAL, 2023, 71
  • [39] POSSIBLE USE OF HALLOYSITE IN PHYTOREMEDIATION OF SOILS CONTAMINATED WITH HEAVY METALS
    Swiercz, Anna
    Smorzewska, Ewelina
    Slomkiewicz, Piotr
    Suchanek, Grazyna
    JOURNAL OF ELEMENTOLOGY, 2016, 21 (02): : 559 - 570
  • [40] Enhanced Immobilization and Phytoremediation of Heavy Metals in Landfill Contaminated Soils
    Fathy Elbehiry
    Heba Elbasiouny
    Rafaat Ali
    Eric C. Brevik
    Water, Air, & Soil Pollution, 2020, 231