Subject variability in sensor-based activity recognition

被引:10
|
作者
Jimale, Ali Olow [1 ,2 ]
Noor, Mohd Halim Mohd [1 ]
机构
[1] Univ Sains Malaysia, Sch Comp Sci, George Town 11800, Malaysia
[2] SIMAD Univ, Fac Comp, Mogadishu, Somalia
关键词
Activity recognition; Deep learning; Machine learning; Subject variability; MONITORING-SYSTEM;
D O I
10.1007/s12652-021-03465-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Building classification models in activity recognition is based on the concept of exchangeability. While splitting the dataset into training and test sets, we assume that the training set is exchangeable with the test set and expect good classification performance. However, this assumption is invalid due to subject variability of the training and test sets due to age differences. This happens when the classification models are trained with adult dataset and tested it with elderly dataset. This study investigates the effects of subject variability on activity recognition using inertial sensor. Two different datasets-one locally collected from 15 elders and another public from 30 adults with eight types of activities-were used to evaluate the assessment techniques using ten-fold cross-validation. Three sets of experiments have been conducted: experiments on the public dataset only, experiments on the local dataset only, and experiments on public (as training) and local (as test) datasets using machine learning and deep learning classifiers including single classifiers (Support Vector Machine, Decision Tree, K-Nearest Neighbors), ensemble classifiers (Adaboost, Random Forest, and XGBoost), and Convolutional Neural Network. The experimental results show that there is a significant performance drop in activity recognition on different subjects with different age groups. It demonstrates that on average the drop in recognition accuracy is 9.75 and 12% for machine learning and deep learning models respectively. This confirms that subject variability concerning age is a valid problem that degrades the performance of activity recognition models.
引用
收藏
页码:3261 / 3274
页数:14
相关论文
共 50 条
  • [11] ConvBoost: Boosting ConvNets for Sensor-based Activity Recognition
    Shao, Shuai
    Guan, Yu
    Zhai, Bing
    Missier, Paolo
    Plotz, Thomas
    PROCEEDINGS OF THE ACM ON INTERACTIVE MOBILE WEARABLE AND UBIQUITOUS TECHNOLOGIES-IMWUT, 2023, 7 (02):
  • [12] Deep Learning for Sensor-based Human Activity Recognition: Overview, Challenges, and Opportunities
    Chen, Kaixuan
    Zhang, Dalin
    Yao, Lina
    Guo, Bin
    Yu, Zhiwen
    Liu, Yunhao
    ACM COMPUTING SURVEYS, 2021, 54 (04)
  • [13] The Opportunity challenge: A benchmark database for on-body sensor-based activity recognition
    Chavarriaga, Ricardo
    Sagha, Hesam
    Calatroni, Alberto
    Digumarti, Sundara Tejaswi
    Troester, Gerhard
    Millan, Jose del R.
    Roggen, Daniel
    PATTERN RECOGNITION LETTERS, 2013, 34 (15) : 2033 - 2042
  • [14] Smartphone Sensor-Based Human Activity Recognition Robust to Different Sampling Rates
    Hasegawa, Tatsuhito
    IEEE SENSORS JOURNAL, 2021, 21 (05) : 6930 - 6941
  • [15] Deep similarity segmentation model for sensor-based activity recognition
    Baraka A.
    Mohd Noor M.H.
    Multimedia Tools and Applications, 2025, 84 (11) : 8869 - 8892
  • [16] Enhancing Representation of Deep Features for Sensor-Based Activity Recognition
    Li, Xue
    Nie, Lanshun
    Si, Xiandong
    Ding, Renjie
    Zhan, Dechen
    MOBILE NETWORKS & APPLICATIONS, 2021, 26 (01) : 130 - 145
  • [17] Sensor-based adaptive activity recognition with dynamically available sensors
    Wen, Jiahui
    Wang, Zhiying
    NEUROCOMPUTING, 2016, 218 : 307 - 317
  • [18] A Study on Sensor-based Activity Recognition Having Missing Data
    Hossain, Tahera
    Goto, Hiroki
    Ahad, Md Atiqur Rahman
    Inoue, Sozo
    2018 JOINT 7TH INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION (ICIEV) AND 2018 2ND INTERNATIONAL CONFERENCE ON IMAGING, VISION & PATTERN RECOGNITION (ICIVPR), 2018, : 556 - 561
  • [19] Enhancing Representation of Deep Features for Sensor-Based Activity Recognition
    Xue Li
    Lanshun Nie
    Xiandong Si
    Renjie Ding
    Dechen Zhan
    Mobile Networks and Applications, 2021, 26 : 130 - 145
  • [20] Invariant Feature Learning for Sensor-Based Human Activity Recognition
    Hao, Yujiao
    Zheng, Rong
    Wang, Boyu
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2022, 21 (11) : 4013 - 4024