Microstructure and Mechanical Properties of As-Deposited and Heat-Treated 18Ni (350) Maraging Steel Fabricated by Gas Metal Arc-Based Wire and Arc Additive Manufacturing

被引:21
|
作者
Wang Xiaowei [1 ,2 ]
Yang Dongqing [1 ,2 ]
Huang Yong [1 ,2 ]
Zhou Qi [1 ,2 ]
Fan Jikang [1 ,2 ]
Wang Kehong [1 ,2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, 200 Xiaolingwei St, Nanjing 210094, Jiangsu, Peoples R China
[2] Nanjing Univ Sci & Technol, Key Lab Controlled Arc Intelligent Addit Mfg, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
18Ni (350) maraging steel; gas metal arc-based wire and arc additive manufacturing; heat-treated; mechanical properties; microstructure; EVOLUTION;
D O I
10.1007/s11665-021-06102-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Additive manufacturing has been a promising method for the production of 18Ni maraging steel, which is characterized by excellent mechanical properties. There are only few available studies on wire and arc additive manufacturing of this steel. In this paper, 18Ni (350) maraging steel thin-wall parts were fabricated by gas metal arc-based wire and arc additive manufacturing (GMA-based WAAM). The aim of this study was to reveal the microstructure and mechanical properties of the as-deposited parts and investigate the effects of the heat treatment process. The microstructure of the deposited part was principally martensite with long columnar grains, accompanied by a small amount of austenite. The average hardness of the as-deposited part was 467 +/- 60 HV. The tensile strengths (UTS and YS) along the building direction were 1481 and 1221 MPa, respectively, and the elongation was 4.8%, which were all larger than those along the deposition direction. After solution treatment, the austenite content, hardness, and tensile strengths of the as-deposited samples decreased, while the elongation increased slightly. After aging treatment, the austenite content and hardness of the solution-treated samples increased, but the UTS and elongation were not improved, indicating that the heat treatment for preparing 18Ni as-deposited samples with excellent mechanical properties requires further investigation.
引用
收藏
页码:6972 / 6981
页数:10
相关论文
共 50 条
  • [31] Characterization of Microstructure and Mechanical Properties of Stellite 6 Part Fabricated by Wire Arc Additive Manufacturing
    Li, Zixiang
    Cui, Yinan
    Wang, Jie
    Liu, Changmeng
    Wang, Jiachen
    Xu, Tianqiu
    Lu, Tao
    Zhang, Haorui
    Lu, Jiping
    Ma, Shuyuan
    Fan, Hongli
    Tang, Shuiyuan
    METALS, 2019, 9 (04):
  • [32] Microstructure and Mechanical Properties of Low-Carbon High-Strength Steel Fabricated by Wire and Arc Additive Manufacturing
    Sun, Laibo
    Jiang, Fengchun
    Huang, Ruisheng
    Yuan, Ding
    Guo, Chunhuan
    Wang, Jiandong
    METALS, 2020, 10 (02)
  • [33] Microstructure and mechanical properties of the austenitic stainless steel 316L fabricated by gas metal arc additive manufacturing
    Chen, Xiaohui
    Li, Jia
    Cheng, Xu
    He, Bei
    Wang, Huaming
    Huang, Zheng
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 703 : 567 - 577
  • [34] Microstructure and mechanical properties of high strength steel deposits obtained by Wire-Arc Additive Manufacturing
    Bourlet, Clement
    Zimmer-Chevret, Sandra
    Pesci, Raphael
    Bigot, Regis
    Robineau, Aurelien
    Scandella, Fabrice
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2020, 285
  • [35] Effect of heat treatment on microstructure and mechanical properties of WE43 alloy fabricated by wire arc additive manufacturing
    Liu, Zhengtao
    Wang, Lei
    Luo, Shuqin
    Feng, Yicheng
    Zhao, Sicong
    Fu, Yuanke
    MATERIALS TODAY COMMUNICATIONS, 2024, 41
  • [36] Microstructure evolution and mechanical properties of new Co-free maraging steel produced by wire arc additive manufacturing
    Zhang, Xiaotian
    Wang, Lei
    Du, Shaofeng
    Li, Qingsong
    Zhang, Lei
    Li, He
    Chen, Zhiwei
    Yang, Dongqing
    Zhang, Xiaoyong
    Wang, Kehong
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 898
  • [37] Microstructure and mechanical properties of unalloyed molybdenum fabricated via wire arc additive manufacturing
    Wang, Jiachen
    Liu, Changmeng
    Lu, Tao
    Fu, Rui
    Xu, Tianqiu
    Li, Zixiang
    Jing, Chenchen
    Cui, Yinan
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2022, 107
  • [38] Microstructure and Mechanical Properties of Mg/Mg Bimetals Fabricated by Wire Arc Additive Manufacturing
    Han, Qifei
    Di, Xinglong
    Guo, Yueling
    Ye, Shuijun
    Zheng, Yuanxuan
    Liu, Changmeng
    ACTA METALLURGICA SINICA, 2025, 61 (02) : 211 - 225
  • [39] Microstructure and mechanical properties of WE43 magnesium alloy fabricated by wire-arc additive manufacturing
    Chen, Fukang
    Cai, Xiaoyu
    Dong, Bolun
    Lin, Sanbao
    THIN-WALLED STRUCTURES, 2025, 206
  • [40] Effect of magnetic Field on the microstructure and mechanical properties of inconel 625 superalloy fabricated by wire arc additive manufacturing
    Wang, Yangfan
    Chen, Xizhang
    Shen, Qingkai
    Su, Chuanchu
    Zhang, Yupeng
    Jayalakshmi, S.
    Singh, R. Arvind
    JOURNAL OF MANUFACTURING PROCESSES, 2021, 64 : 10 - 19