The 1+1-dimensional Kardar-Parisi-Zhang equation and its universality class

被引:58
|
作者
Sasamoto, Tomohiro [1 ]
Spohn, Herbert [2 ,3 ]
机构
[1] Chiba Univ, Chiba, Japan
[2] Tech Univ Munich, Zentrum Math, D-85747 Garching, Germany
[3] Tech Univ Munich, Dept Phys, D-85747 Garching, Germany
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2010年
关键词
exact results; kinetic growth processes (theory); stochastic particle dynamics (theory); SIMPLE EXCLUSION PROCESS; DIRECTED POLYMERS; GROWTH-PROCESSES; RANDOM MATRICES; INITIAL CONDITION; SURFACE GROWTH; DISTRIBUTIONS; FLUCTUATIONS; INTERFACES; TASEP;
D O I
10.1088/1742-5468/2010/11/P11013
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We explain the exact solution of the 1 + 1-dimensional Kardar-Parisi-Zhang equation with sharp wedge initial conditions. Thereby it is confirmed that the continuum model belongs to the KPZ universality class, not only as regards scaling exponents but also as regards the full probability distribution of the height in the long time limit.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Recent developments on the Kardar-Parisi-Zhang surface-growth equation
    Wio, Horacio S.
    Escudero, Carlos
    Revelli, Jorge A.
    Deza, Roberto R.
    de la Lama, Marta S.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 369 (1935): : 396 - 411
  • [42] Exact Short-Time Height Distribution in the One-Dimensional Kardar-Parisi-Zhang Equation and Edge Fermions at High Temperature
    Le Doussal, Pierre
    Majumdar, Satya N.
    Rosso, Alberto
    Schehr, Gregory
    PHYSICAL REVIEW LETTERS, 2016, 117 (07)
  • [43] Kardar-Parisi-Zhang growth in ε dimensions and beyond
    Halpin-Healy, Timothy
    PHYSICAL REVIEW E, 2025, 111 (01)
  • [44] Scaling analysis of the anisotropic nonlocal Kardar-Parisi-Zhang equation
    Tang, G
    Ma, BK
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 310 (1-2) : 1 - 6
  • [45] Kardar-Parisi-Zhang equation with temporally correlated noise: A nonperturbative renormalization group approach
    Squizzato, Davide
    Canet, Leonie
    PHYSICAL REVIEW E, 2019, 100 (06)
  • [46] Diffusion in time-dependent random media and the Kardar-Parisi-Zhang equation
    Le Doussal, Pierre
    Thiery, Thimothee
    PHYSICAL REVIEW E, 2017, 96 (01)
  • [47] Universal correlators and distributions as experimental signatures of (2+1)-dimensional Kardar-Parisi-Zhang growth
    Halpin-Healy, Timothy
    Palasantzas, George
    EPL, 2014, 105 (05)
  • [48] Kardar-Parisi-Zhang Interfaces with Inward Growth
    Fukai, Yohsuke T.
    Takeuchi, Kazumasa A.
    PHYSICAL REVIEW LETTERS, 2017, 119 (03)
  • [49] Large deviations for the height in 1D Kardar-Parisi-Zhang growth at late times
    Le Doussal, Pierre
    Majumdar, Satya N.
    Schehr, Gregory
    EPL, 2016, 113 (06)
  • [50] Scaling behaviour of the time-fractional Kardar-Parisi-Zhang equation
    Xia, Hui
    Tang, Gang
    Ma, Jingjie
    Hao, Dapeng
    Xun, Zhipeng
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (27)