The 1+1-dimensional Kardar-Parisi-Zhang equation and its universality class

被引:58
|
作者
Sasamoto, Tomohiro [1 ]
Spohn, Herbert [2 ,3 ]
机构
[1] Chiba Univ, Chiba, Japan
[2] Tech Univ Munich, Zentrum Math, D-85747 Garching, Germany
[3] Tech Univ Munich, Dept Phys, D-85747 Garching, Germany
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2010年
关键词
exact results; kinetic growth processes (theory); stochastic particle dynamics (theory); SIMPLE EXCLUSION PROCESS; DIRECTED POLYMERS; GROWTH-PROCESSES; RANDOM MATRICES; INITIAL CONDITION; SURFACE GROWTH; DISTRIBUTIONS; FLUCTUATIONS; INTERFACES; TASEP;
D O I
10.1088/1742-5468/2010/11/P11013
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We explain the exact solution of the 1 + 1-dimensional Kardar-Parisi-Zhang equation with sharp wedge initial conditions. Thereby it is confirmed that the continuum model belongs to the KPZ universality class, not only as regards scaling exponents but also as regards the full probability distribution of the height in the long time limit.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Sinc noise for the Kardar-Parisi-Zhang equation
    Niggemann, Oliver
    Hinrichsen, Haye
    PHYSICAL REVIEW E, 2018, 97 (06)
  • [22] Kardar-Parisi-Zhang universality class for the critical dynamics of reaction-diffusion fronts
    Barreales, B. G.
    Melendez, J. J.
    Cuerno, R.
    Ruiz-Lorenzo, J. J.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2020, 2020 (02):
  • [23] Jointly invariant measures for the Kardar-Parisi-Zhang equation
    Groathouse, Sean
    Rassoul-Agha, Firas
    Seppalainen, Timo
    Sorensen, Evan
    PROBABILITY THEORY AND RELATED FIELDS, 2025, : 303 - 372
  • [24] Phenomenology of aging in the Kardar-Parisi-Zhang equation
    Henkel, Malte
    Noh, Jae Dong
    Pleimling, Michel
    PHYSICAL REVIEW E, 2012, 85 (03):
  • [25] Minimum action method for the Kardar-Parisi-Zhang equation
    Fogedby, Hans C.
    Ren, Weiqing
    PHYSICAL REVIEW E, 2009, 80 (04)
  • [26] Kardar-Parisi-Zhang universality in the coherence time of nonequilibrium one-dimensional quasicondensates
    Amelio, Ivan
    Chiocchetta, Alessio
    Carusotto, Iacopo
    PHYSICAL REVIEW E, 2024, 109 (01)
  • [27] Fragility of Kardar-Parisi-Zhang universality class in the presence of temporally correlated noise
    Rodriguez-Fernandez, Enrique
    Ales, Alejandro
    Martin-alvarez, Jorge
    Lopez, Juan M.
    PHYSICAL REVIEW E, 2024, 110 (02)
  • [28] Non-universal parameters, corrections and universality in Kardar-Parisi-Zhang growth
    Alves, Sidiney G.
    Oliveira, Tiago J.
    Ferreira, Silvio C.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [29] Accessing Kardar-Parisi-Zhang universality sub-classes with exciton polaritons
    Deligiannis, Konstantinos
    Squizzato, Davide
    Minguzzi, Anna
    Canet, Leonie
    EPL, 2020, 132 (06)
  • [30] Competing Universalities in Kardar-Parisi-Zhang Growth Models
    Saberi, Abbas Ali
    Dashti-Naserabadi, Hor
    Krug, Joachim
    PHYSICAL REVIEW LETTERS, 2019, 122 (04)