Efficient Prediction of Low-Visibility Events at Airports Using Machine-Learning Regression

被引:35
|
作者
Cornejo-Bueno, L. [1 ]
Casanova-Mateo, C. [2 ,3 ]
Sanz-Justo, J. [2 ]
Cerro-Prada, E. [3 ]
Salcedo-Sanz, S. [1 ]
机构
[1] Univ Alcala, Dept Signal Proc & Commun, Madrid 28805, Spain
[2] Univ Valladolid, LATUV Remote Sensing Lab, Valladolid, Spain
[3] Univ Politecn Madrid, Dept Civil Engn Construct Infrastruct & Transport, Madrid, Spain
关键词
Airports; Algorithms; Fog prediction; Low-visibility events; Machine learning; RADIATION FOG; MODEL; FORECAST; NETWORKS; ONSET; TIME;
D O I
10.1007/s10546-017-0276-8
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
We address the prediction of low-visibility events at airports using machine-learning regression. The proposed model successfully forecasts low-visibility events in terms of the runway visual range at the airport, with the use of support-vector regression, neural networks (multi-layer perceptrons and extreme-learning machines) and Gaussian-process algorithms. We assess the performance of these algorithms based on real data collected at the Valladolid airport, Spain. We also propose a study of the atmospheric variables measured at a nearby tower related to low-visibility atmospheric conditions, since they are considered as the inputs of the different regressors. A pre-processing procedure of these input variables with wavelet transforms is also described. The results show that the proposed machine-learning algorithms are able to predict low-visibility events well. The Gaussian process is the best algorithm among those analyzed, obtaining over 98% of the correct classification rate in low-visibility events when the runway visual range is 1000 m, and about 80% under this threshold. The performance of all the machine-learning algorithms tested is clearly affected in extreme low-visibility conditions (500 m). However, we show improved results of all the methods when data from a neighbouring meteorological tower are included, and also with a pre-processing scheme using a wavelet transform. Also presented are results of the algorithm performance in daytime and nighttime conditions, and for different prediction time horizons.
引用
收藏
页码:349 / 370
页数:22
相关论文
共 50 条
  • [41] Lipidomics Prediction of Parkinson's Disease Severity: A Machine-Learning Analysis
    Avisar, Hila
    Guardia-Laguarta, Cristina
    Area-Gomez, Estela
    Surface, Matthew
    Chan, Amanda K.
    Alcalay, Roy N.
    Lerner, Boaz
    JOURNAL OF PARKINSONS DISEASE, 2021, 11 (03) : 1141 - 1155
  • [42] An efficient smart parking pricing system for smart city environment: A machine-learning based approach
    Saharan, Sandeep
    Kumar, Neeraj
    Bawa, Seema
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 106 : 622 - 640
  • [43] Prediction of Fatty Liver Disease in a Chinese Population Using Machine-Learning Algorithms
    Weng, Shuwei
    Hu, Die
    Chen, Jin
    Yang, Yanyi
    Peng, Daoquan
    DIAGNOSTICS, 2023, 13 (06)
  • [44] Prediction of Progressive Frost Damage Development of Concrete Using Machine-Learning Algorithms
    ul Haq, Muhammad Atasham
    Xu, Wencheng
    Abid, Muhammad
    Gong, Fuyuan
    BUILDINGS, 2023, 13 (10)
  • [45] LSO-080 Machine-learning approach on lupus low disease activity prediction
    Faelnar, Nick
    Tee, Michael
    Tee, Cherica
    Caro, Jaime
    Solano, Geoffrey
    Kandane-Rathnayake, Rangi
    Magbitang-Santiago, Angelene Therese
    Salido, Evelyn
    Golder, Vera
    Louthrenoo, Worawit
    Chen, Yi-Hsing
    Cho, Jiacai
    Lateef, Aisha
    Hamijoyo, Laniyati
    Luo, Shue-Fen
    Wu, Yeong-Jian J.
    Navarra, Sandra
    Zamora, Leonid
    Li, Zhanguo
    Sockalingam, Sargunan
    Katsumata, Yasuhiro
    Harigai, Masayoshi
    Hao, Yanjie
    Zhang, Zhuoli
    Basnayake, B. M. D. B.
    Chann, Madelynn
    Kikuchi, Jun
    Takeuchi, Tsutomu
    Bae, Sang-Cheol
    Oon, Shereen
    O'Neill, Sean
    Goldblatt, Fiona
    Ng, Kristine
    Law, Annie
    Tugnet, Nicola
    Kumar, Sunil
    Ohkubo, Naoaki
    Tanaka, Yoshiya
    Lau, Chak Sing
    Nikpour, Mandana
    Hoi, Alberta
    Morand, Eric
    LUPUS SCIENCE & MEDICINE, 2023, 10 (SUPPL_1): : A84 - A84
  • [46] Prediction of fast neutron spectra with a spherical TEPC using a machine-learning algorithm
    Antoni, Rodolphe
    Allinei, Pierre-Guy
    Bourgois, Laurent
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2023, 1050
  • [47] Endpoint Temperature Prediction model for LD Converters Using Machine-Learning Techniques
    Jo, Hyeontae
    Hwang, Hyung Ju
    Du Phan
    Lee, Youmin
    Jang, Hyeokjae
    2019 IEEE 6TH INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND APPLICATIONS (ICIEA), 2019, : 22 - 26
  • [48] Machine-learning prediction of cancer survival: a retrospective study using electronic administrative records and a cancer registry
    Gupta, Sunil
    Truyen Tran
    Luo, Wei
    Dinh Phung
    Kennedy, Richard Lee
    Broad, Adam
    Campbell, David
    Kipp, David
    Singh, Madhu
    Khasraw, Mustafa
    Matheson, Leigh
    Ashley, David M.
    Venkatesh, Svetha
    BMJ OPEN, 2014, 4 (03):
  • [49] Prediction of preterm birth in multiparous women using logistic regression and machine learning approaches
    Belaghi, Reza Arabi
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [50] Machine-learning regression for coral reef percentage cover mapping
    Wicaksono, Pramaditya
    Lazuardi, Wahyu
    Al Hadi, Afif
    Kamal, Muhammad
    REMOTE SENSING OF THE OPEN AND COASTAL OCEAN AND INLAND WATERS, 2018, 10778