Stability of nonparaxial gap-soliton bullets in waveguide gratings

被引:4
作者
Otsobo, J. A. Ambassa [1 ,2 ]
Megne, L. Tiam [1 ,2 ]
Tabi, C. B. [3 ]
Kofane, T. C. [1 ,2 ,3 ]
机构
[1] Univ Yaounde I, Fac Sci, Dept Phys, Lab Mech, POB 812, Yaounde, Cameroon
[2] Univ Yaounde I, Ctr Excellence Africain Technol Informat & Commun, Yaounde, Cameroon
[3] Botswana Int Univ Sci & Technol, Dept Phys & Astron, P-Bag 16, Palapye, Botswana
基金
美国国家科学基金会;
关键词
Gap-soliton bullets; Nonparaxial approximation; 2D nonlinear Schr?dinger equation; Higher-order dispersions; SELF-INDUCED TRANSPARENCY; 3-DIMENSIONAL SPINNING SOLITONS; DISPERSIVE DIELECTRIC FIBERS; NONLINEAR HELMHOLTZ-EQUATION; GINZBURG-LANDAU EQUATION; SPATIOTEMPORAL SOLITONS; OPTICAL PULSES; PROPAGATION; MEDIA; BEAM;
D O I
10.1016/j.chaos.2022.112034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the formation and propagation of gap-soliton bullets in nonlinear periodic waveguides at fre-quencies close to the gap for Bragg reflection beyond the paraxial approximation. Using a multiple-scales analy-sis, we derive a two-dimensional (2D) nonlinear Schrodinger equation with higher-order correction terms that consider the nonparaxial regimes in the slowly-varying envelope approximation. In addition, a fully numerical simulation of the newly derived model equation demonstrates that the mutual balancing between Kerr, dimen-sionality, higher-order dispersions and nonparaxiality allows shape-preserving propagation of gap-soliton bul -lets in a grating waveguide. (c) 2022 Published by Elsevier Ltd.
引用
收藏
页数:9
相关论文
共 137 条
  • [11] Atai J, 2001, PHYS REV E, V64, DOI 10.1103/PhysRevE.64.066617
  • [12] Bragg-grating solitons in a semilinear dual-core system
    Atai, J
    Malomed, BA
    [J]. PHYSICAL REVIEW E, 2000, 62 (06) : 8713 - 8718
  • [13] Three-dimensional accelerating electromagnetic waves
    Bandres, Miguel A.
    Alonso, Miguel A.
    Kaminer, Ido
    Segev, Mordechai
    [J]. OPTICS EXPRESS, 2013, 21 (12): : 13917 - 13929
  • [14] Simulations of the nonlinear Helmholtz equation: arrest of beam collapse, nonparaxial solitons and counter-propagating beams
    Baruch, G.
    Fibich, G.
    Tsynkov, Semyon
    [J]. OPTICS EXPRESS, 2008, 16 (17): : 13323 - 13329
  • [15] DISINTEGRATION OF WAVE TRAINS ON DEEP WATER .1. THEORY
    BENJAMIN, TB
    FEIR, JE
    [J]. JOURNAL OF FLUID MECHANICS, 1967, 27 : 417 - &
  • [16] Wave collapse in physics: principles and applications to light and plasma waves
    Berge, L
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 303 (5-6): : 259 - 370
  • [17] Self-guiding light in layered nonlinear media
    Bergé, L
    Mezentsev, VK
    Rasmussen, JJ
    Christiansen, PL
    Gaididei, YB
    [J]. OPTICS LETTERS, 2000, 25 (14) : 1037 - 1039
  • [18] Tuning of non-paraxial effects of the Laguerre-Gaussian beam interacting with the two-component Bose-Einstein condensates
    Bhowmik, Anal
    Majumder, Sonjoy
    [J]. JOURNAL OF PHYSICS COMMUNICATIONS, 2018, 2 (12):
  • [19] Spatiotemporally localized multidimensional solitons in self-induced transparency media
    Blaauboer, M
    Malomed, BA
    Kurizki, G
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (09) : 1906 - 1909
  • [20] Spatiotemporally localized solitons in resonantly absorbing Bragg reflectors
    Blaauboer, M
    Kurizki, G
    Malomed, BA
    [J]. PHYSICAL REVIEW E, 2000, 62 (01): : R57 - R59