Small gold clusters (similar to 1 nm) protected by molecules of a tripeptide, glutathione (GSH), were prepared by reductive decomposition of Au(I)-SG polymers at a low temperature and separated into a number of fractions by polyacrylamide gel electrophoresis (PAGE). Chemical compositions of the fractionated clusters determined previously by electrospray ionization (ESI) mass spectrometry (Negishi, Y. et al. J. Am. Chem. Soc. 2004, 126, 6518) were reassessed by taking advantage of freshly prepared samples, higher mass resolution, and more accurate mass calibration; the nine smallest components are reassigned to Au-10(SG)(10), Au-15(SG)(13), Au-18(SG)(14), Au-22(SG)(16), Au-22(SG)(17), Au-25(SG)(18), Au-29(SG)(20), Au-33(SG)(22), and Au-39(SG)(24). These assignments were further confirmed by measuring the mass spectra of the isolated Au:S(h-G) clusters, where h-GSH is a homoglutathione. It is proposed that a series of the isolated Au:SG clusters corresponds to kinetically trapped intermediates of the growing Au cores. The relative abundance of the isolated clusters was correlated well with the thermodynamic stabilities against unimolecular decomposition. The electronic structures of the isolated Au:SG clusters were probed by X-ray photoelectron spectroscopy (XPS) and optical spectroscopy. The Au(4f) XPS spectra illustrate substantial electron donation from the gold cores to the GS ligands in the Au:SG clusters. The optical absorption and photoluminescence spectra indicate that the electronic structures of the Au:SG clusters are well quantized; embryos of the sp band of the bulk gold evolve remarkably depending on the number of the gold atoms and GS ligands. The comparison of these spectral data with those of sodium Au(I) thiomalate and 1.8 nm Au:SG nanocrystals (NCs) reveals that the subnanometer-sized Au clusters thiolated constitute a distinct class of binary system which lies between the Au(I)-thiolate complexes and thiolate-protected Au NCs.
机构:
Himeji Inst Technol, Dept Mat Sci, Fac Sci, Kamigori, Hyogo 6781297, JapanHimeji Inst Technol, Dept Mat Sci, Fac Sci, Kamigori, Hyogo 6781297, Japan
Chen, SH
Yao, H
论文数: 0引用数: 0
h-index: 0
机构:
Himeji Inst Technol, Dept Mat Sci, Fac Sci, Kamigori, Hyogo 6781297, JapanHimeji Inst Technol, Dept Mat Sci, Fac Sci, Kamigori, Hyogo 6781297, Japan
Yao, H
Kimura, K
论文数: 0引用数: 0
h-index: 0
机构:
Himeji Inst Technol, Dept Mat Sci, Fac Sci, Kamigori, Hyogo 6781297, JapanHimeji Inst Technol, Dept Mat Sci, Fac Sci, Kamigori, Hyogo 6781297, Japan
机构:
Himeji Inst Technol, Dept Mat Sci, Fac Sci, Kamigori, Hyogo 6781297, JapanHimeji Inst Technol, Dept Mat Sci, Fac Sci, Kamigori, Hyogo 6781297, Japan
Chen, SH
Yao, H
论文数: 0引用数: 0
h-index: 0
机构:
Himeji Inst Technol, Dept Mat Sci, Fac Sci, Kamigori, Hyogo 6781297, JapanHimeji Inst Technol, Dept Mat Sci, Fac Sci, Kamigori, Hyogo 6781297, Japan
Yao, H
Kimura, K
论文数: 0引用数: 0
h-index: 0
机构:
Himeji Inst Technol, Dept Mat Sci, Fac Sci, Kamigori, Hyogo 6781297, JapanHimeji Inst Technol, Dept Mat Sci, Fac Sci, Kamigori, Hyogo 6781297, Japan