A LIOUVILLE THEOREM FOR INDEFINITE FRACTIONAL DIFFUSION EQUATIONS AND ITS APPLICATION TO EXISTENCE OF SOLUTIONS

被引:4
作者
Barrios, Begona [1 ]
Del Pezzo, Leandro [2 ]
Garcia-Melian, Jorge [1 ,3 ]
Quaas, Alexander [4 ]
机构
[1] Univ La Laguna, Dept Anal Matemat, C Astrofis Francisco Sanchez S-N, San Cristobal la Laguna 38200, Spain
[2] Univ Torcuato Tella, CONICET, Dept Matemat & Estadist, Ave Figueroa Alcorta 7350,C1428BCW, Ca De Buenos Aires, Argentina
[3] Univ La Laguna, Inst Univ Estudios Avanzados IUdEA Fis Atom Mol &, C Astrofis Francisco Sanchez S-N, San Cristobal la Laguna 38200, Spain
[4] Univ Tecn Federico Santa Maria, Dept Matemat, Casilla 5-110,Avda Espana, Valparaiso 1680, Chile
关键词
Liouville theorem; fractional Laplacian; positive solution; a priori bounds; SEMILINEAR ELLIPTIC-EQUATIONS; MOVING PLANES; R-N; REGULARITY; NONLINEARITIES; CLASSIFICATION; LAPLACIAN; SIGN;
D O I
10.3934/dcds.2017248
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we obtain a Liouville theorem for positive, bounded solutions of the equation (Delta)(s) u = h (x (N)) f (u) in R-N where (-Delta)(s) stands for the fractional Laplacian with s is an element of (0; 1), and the functions h and f are nondecreasing. The main feature is that the function h changes sign in R, therefore the problem is sometimes termed as indefinite. As an application we obtain a priori bounds for positive solutions of some boundary value problems, which give existence of such solutions by means of bifurcation methods.
引用
收藏
页码:5731 / 5746
页数:16
相关论文
共 37 条
[1]   ON SEMILINEAR ELLIPTIC-EQUATIONS WITH INDEFINITE NONLINEARITIES [J].
ALAMA, S ;
TARANTELLO, G .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1993, 1 (04) :439-475
[2]   Elliptic problems with nonlinearities indefinite in sign [J].
Alama, S ;
Tarantello, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 141 (01) :159-215
[3]   A priori bounds and multiple solutions for superlinear indefinite elliptic problems [J].
Amann, H ;
Lopez-Gomez, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 146 (02) :336-374
[4]  
[Anonymous], 1994, Topol. Methods Nonlinear Anal.
[5]   Monotonicity of solutions for some nonlocal elliptic problems in half-spaces [J].
Barrios, B. ;
Del Pezzo, L. ;
Garcia-Melian, J. ;
Quaas, A. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (02)
[6]  
Barrios B., REV MAT IBE IN PRESS
[7]  
Berestycki H., 1995, NODEA-NONLINEAR DIFF, V2, P553, DOI [DOI 10.1007/BF01210623, 10.1007/BF01210623]
[8]  
Bianchi G, 1997, COMMUN PART DIFF EQ, V22, P1671
[9]   The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function [J].
Brown, KJ ;
Zhang, YP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 193 (02) :481-499
[10]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260