Behavior of eigenvalues of certain Schrodinger operators in the rational Dunkl setting

被引:1
|
作者
Hejna, Agnieszka [1 ]
机构
[1] Uniwersytet Wroclawski, Inst Matemat, Pl Grunwaldzki 2-4, PL-50384 Wroclaw, Poland
关键词
Rational Dunkl theory; Schrodinger operators; Asymptotic distributions of eigenvalues; Reverse Holder classes; Fefferman-Phong inequality; 35P20; 35J10; 42B37; 35K08; 42B35; EIGENFUNCTIONS; ASYMPTOTICS;
D O I
10.1007/s13324-021-00556-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a normalized root system R in RN and a multiplicity function k >= 0 let N=N+Sigma alpha is an element of Rk(alpha). We denote by dw(x)=Pi alpha is an element of R|x,alpha |k(alpha) dx the associated measure in RN. Let L=-Delta +V, V >= 0, be the Dunkl-Schrodinger operator on RN. Assume that there exists q>max(1,<mml:mfrac>N2</mml:mfrac>) such that V belongs to the reverse Holder class RHq(dw). For lambda >0 we provide upper and lower estimates for the number of eigenvalues of L which are less or equal to lambda. Our main tool in the Fefferman-Phong type inequality in the rational Dunkl setting.
引用
收藏
页数:18
相关论文
共 37 条