Hyperdoping silicon with selenium: solid vs. liquid phase epitaxy

被引:48
|
作者
Zhou, Shengqiang [1 ]
Liu, Fang [1 ,2 ]
Prucnal, S. [1 ]
Gao, Kun [1 ,2 ]
Khalid, M. [1 ]
Baehtz, C. [1 ]
Posselt, M. [1 ]
Skorupa, W. [1 ]
Helm, M. [1 ,2 ]
机构
[1] Helmholtz Zentrum Dresden Rossendorf, Inst Ion Beam Phys & Mat Res, D-01328 Dresden, Germany
[2] Tech Univ Dresden, D-01062 Dresden, Germany
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
关键词
LASER; SI; REGROWTH; DEPENDENCE; REDISTRIBUTION; SEGREGATION; INTERFACE; SUBSTRATE; JUNCTIONS; KINETICS;
D O I
10.1038/srep08329
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Chalcogen-hyperdoped silicon shows potential applications in silicon-based infrared photodetectors and intermediate band solar cells. Due to the low solid solubility limits of chalcogen elements in silicon, these materials were previously realized by femtosecond or nanosecond laser annealing of implanted silicon or bare silicon in certain background gases. The high energy density deposited on the silicon surface leads to a liquid phase and the fast recrystallization velocity allows trapping of chalcogen into the silicon matrix. However, this method encounters the problem of surface segregation. In this paper, we propose a solid phase processing by flash-lamp annealing in the millisecond range, which is in between the conventional rapid thermal annealing and pulsed laser annealing. Flash lamp annealed selenium-implanted silicon shows a substitutional fraction of similar to 70% with an implanted concentration up to 2.3%. The resistivity is lower and the carrier mobility is higher than those of nanosecond pulsed laser annealed samples. Our results show that flash-lamp annealing is superior to laser annealing in preventing surface segregation and in allowing scalability.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Solid phase epitaxial regrowth of amorphous silicon is not affected by structural relaxation
    Roorda, S.
    Lavigueur, Y.
    PHILOSOPHICAL MAGAZINE, 2010, 90 (29) : 3787 - 3794
  • [32] Liquid-Liquid Phase Transition in Nanoconfined Silicon Carbide
    Wu, Weikang
    Zhang, Leining
    Liu, Sida
    Ren, Hongru
    Zhou, Xuyan
    Li, Hui
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (08) : 2815 - 2822
  • [33] Electronic phase coherence vs. dissipation in solid-state quantum devices: Two approximations are better than one
    Iotti, R. C.
    Rossi, F.
    EPL, 2015, 112 (06)
  • [34] Critical Assessment of the Impurity Diffusivities in Solid and Liquid Silicon
    Tang, Kai
    Ovrelid, Eivind J.
    Tranell, Gabriella
    Tangstad, Merete
    JOM, 2009, 61 (11) : 49 - 55
  • [35] Fluorine redistribution and incorporation during solid phase epitaxy of preamorphized Si
    Mastromatteo, M.
    De Salvador, D.
    Napolitani, E.
    Panciera, F.
    Bisognin, G.
    Carnera, A.
    Impellizzeri, G.
    Mirabella, S.
    Priolo, F.
    PHYSICAL REVIEW B, 2010, 82 (15)
  • [36] Defect Mitigation by Ion Induced Amorphousization and Solid-Phase Epitaxy
    Phinney, L. C.
    Cottier, R. J.
    Golding, T. D.
    Holland, O. W.
    Hossain, K.
    APPLICATION OF ACCELERATORS IN RESEARCH AND INDUSTRY, 2013, 1525 : 204 - 207
  • [37] Advancements in single-crystal silicon with elevated-laser-liquid-phase-epitaxy (ELLPE) for monolithic 3D ICs
    Shih, Bo-Jheng
    Pan, Yu-Ming
    Chung, Hao-Tung
    Lin, Nein-Chih
    Yang, Chih-Chao
    Huang, Po-Tsang
    Cheng, Huang-Chung
    Shen, Chang-Hong
    Shieh, Jia-Min
    Wu, Wen-Fa
    Chen, Kuan-Neng
    Hu, Chenming
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2024, 63 (04)
  • [38] A new cooling plus heating mode of liquid phase epitaxy and its application for oriented film growth
    Guo, L. S.
    Chen, Y. Y.
    Yao, X.
    CRYSTENGCOMM, 2015, 17 (17): : 3251 - 3256
  • [39] Mechanochemical Reactivity of Bottlebrush and Dendronized Polymers: Solid vs. Solution States
    Noh, Jinkyung
    Peterson, Gregory I.
    Choi, Tae-Lim
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (34) : 18651 - 18659
  • [40] Influence of the liquid phase epitaxy conditions of growth on solar cells performance
    Cieslak, K.
    Olchowik, J.
    Gulkowski, S.
    ENVIRONMENTAL ENGINEERING IV, 2013, : 475 - 478