Hyperdoping silicon with selenium: solid vs. liquid phase epitaxy

被引:48
|
作者
Zhou, Shengqiang [1 ]
Liu, Fang [1 ,2 ]
Prucnal, S. [1 ]
Gao, Kun [1 ,2 ]
Khalid, M. [1 ]
Baehtz, C. [1 ]
Posselt, M. [1 ]
Skorupa, W. [1 ]
Helm, M. [1 ,2 ]
机构
[1] Helmholtz Zentrum Dresden Rossendorf, Inst Ion Beam Phys & Mat Res, D-01328 Dresden, Germany
[2] Tech Univ Dresden, D-01062 Dresden, Germany
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
关键词
LASER; SI; REGROWTH; DEPENDENCE; REDISTRIBUTION; SEGREGATION; INTERFACE; SUBSTRATE; JUNCTIONS; KINETICS;
D O I
10.1038/srep08329
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Chalcogen-hyperdoped silicon shows potential applications in silicon-based infrared photodetectors and intermediate band solar cells. Due to the low solid solubility limits of chalcogen elements in silicon, these materials were previously realized by femtosecond or nanosecond laser annealing of implanted silicon or bare silicon in certain background gases. The high energy density deposited on the silicon surface leads to a liquid phase and the fast recrystallization velocity allows trapping of chalcogen into the silicon matrix. However, this method encounters the problem of surface segregation. In this paper, we propose a solid phase processing by flash-lamp annealing in the millisecond range, which is in between the conventional rapid thermal annealing and pulsed laser annealing. Flash lamp annealed selenium-implanted silicon shows a substitutional fraction of similar to 70% with an implanted concentration up to 2.3%. The resistivity is lower and the carrier mobility is higher than those of nanosecond pulsed laser annealed samples. Our results show that flash-lamp annealing is superior to laser annealing in preventing surface segregation and in allowing scalability.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Fluorine incorporation during Si solid phase epitaxy
    Impellizzeri, G
    Mirabella, S
    Romano, L
    Napolitani, E
    Carnera, A
    Grimaldi, MG
    Priolo, F
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2006, 242 (1-2): : 614 - 616
  • [22] Lateral solid phase epitaxy of yttrium iron garnet
    Sailler, Sebastian
    Pohl, Darius
    Schloerb, Heike
    Rellinghaus, Bernd
    Thomas, Andy
    Goennenwein, Sebastian T. B.
    Lammel, Michaela
    PHYSICAL REVIEW MATERIALS, 2024, 8 (02):
  • [23] Fluoride waveguide lasers grown by liquid phase epitaxy
    Starecki, Florent
    Bolanos, Western
    Brasse, Gurvan
    Benayad, Abdelmjid
    Doualan, Jean-Louis
    Braud, Alain
    Moncorge, Richard
    Camy, Patrice
    SOLID STATE LASERS XXII: TECHNOLOGY AND DEVICES, 2013, 8599
  • [24] Liquid phase epitaxy of Si from Pb solutions
    Konuma, M
    Cristiani, G
    Czech, E
    Silier, I
    JOURNAL OF CRYSTAL GROWTH, 1999, 198 : 1045 - 1048
  • [25] Planar waveguides in YLF grown by liquid phase epitaxy
    Rogin, P
    Hulliger, J
    SOLID STATE LASERS VI, 1997, 2986 : 39 - 45
  • [26] An Atomistic Model of Stressed Si Solid-Phase Epitaxy
    Rudawski, N. G.
    Jones, K. S.
    Gwilliam, R.
    ION IMPLANTATION TECHNOLOGY 2008, 2008, 1066 : 205 - +
  • [27] Hydrogen in amorphous Si and Ge during solid phase epitaxy
    Johnson, B. C.
    Caradonna, P.
    Pyke, D. J.
    McCallum, J. C.
    Gortmaker, P.
    THIN SOLID FILMS, 2010, 518 (09) : 2317 - 2322
  • [28] Solid phase epitaxy of amorphous Ge films deposited by PECVD
    Ma, Quan-Bao
    Lieten, Ruben
    Leys, Maarten
    Degroote, Stefan
    Germain, Marianne
    Borghs, Gustaaf
    JOURNAL OF CRYSTAL GROWTH, 2011, 331 (01) : 40 - 43
  • [29] Crystallization of amorphous complex oxides: New geometries and new compositions via solid phase epitaxy
    Evans, Paul G.
    Chen, Yajin
    Tilka, Jack A.
    Babcock, Susan E.
    Kuech, Thomas F.
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2018, 22 (06): : 229 - 242
  • [30] Homogenization and two-scale models for liquid phase epitaxy
    Eck, Ch.
    Emmerich, H.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2009, 177 : 5 - 21