Nonparametric Bayesian sparse graph linear dynamical systems

被引:0
|
作者
Kalantari, Rahi [1 ]
Ghosh, Joydeep [1 ]
Zhou, Mingyuan [2 ]
机构
[1] Univ Texas Austin, Elect & Comp Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, McCombs Sch Business, Austin, TX 78712 USA
来源
INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84 | 2018年 / 84卷
关键词
VARIABLE SELECTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A nonparametric Bayesian sparse graph linear dynamical system (SGLDS) is proposed to model sequentially observed multivariate data. SGLDS uses the Bernoulli-Poisson link together with a gamma process to generate an infinite dimensional sparse random graph to model state transitions. Depending on the sparsity pattern of the corresponding row and column of the graph affinity matrix, a latent state of SGLDS can be categorized as either a non-dynamic state or a dynamic one. A normal-gamma construction is used to shrink the energy captured by the non-dynamic states, while the dynamic states can be further categorized into live, absorbing, or noise-injection states, which capture different types of dynamical components of the underlying time series. The state-of-the-art performance of SGLDS is demonstrated with experiments on both synthetic and real data.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] On the Frequentist Properties of Bayesian Nonparametric Methods
    Rousseau, Judith
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 3, 2016, 3 : 211 - 231
  • [22] Graph-based sparse linear discriminant analysis for high-dimensional classification
    Liu, Jianyu
    Yu, Guan
    Liu, Yufeng
    JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 171 : 250 - 269
  • [23] Adaptive Variable Selection in Nonparametric Sparse Regression
    Ingster Y.
    Stepanova N.
    Journal of Mathematical Sciences, 2014, 199 (2) : 184 - 201
  • [24] Sparse nonparametric model for regression with functional covariate
    Aneiros, G.
    Vieu, P.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2016, 28 (04) : 839 - 859
  • [25] Bayesian Sparse Topic Model
    Chien, Jen-Tzung
    Chang, Ying-Lan
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2014, 74 (03): : 375 - 389
  • [26] Bayesian Sparse Group Selection
    Chen, Ray-Bing
    Chu, Chi-Hsiang
    Yuan, Shinsheng
    Wu, Ying Nian
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2016, 25 (03) : 665 - 683
  • [27] The how and why of Bayesian nonparametric causal inference
    Linero, Antonio R.
    Antonelli, Joseph L.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2023, 15 (01)
  • [28] Inner spike and slab Bayesian nonparametric models
    Canale, Antonio
    Lijoi, Antonio
    Nipoti, Bernardo
    Prunster, Igor
    ECONOMETRICS AND STATISTICS, 2023, 27 : 120 - 135
  • [29] A Bayesian nonparametric testing procedure for paired samples
    Pereira, Luz Adriana
    Taylor-Rodriguez, Daniel
    Gutierrez, Luis
    BIOMETRICS, 2020, 76 (04) : 1133 - 1146
  • [30] Bayesian Factorizations of Big Sparse Tensors
    Zhou, Jing
    Bhattacharya, Anirban
    Herring, Amy H.
    Dunson, David B.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (512) : 1562 - 1576