AtDIV2, an R-R-type MYB transcription factor of Arabidopsis, negatively regulates salt stress by modulating ABA signaling

被引:58
|
作者
Fang, Qing [1 ]
Wang, Qiong [1 ]
Mao, Hui [1 ]
Xu, Jing [1 ]
Wang, Ying [1 ]
Hu, Hao [1 ]
He, Shuai [1 ]
Tu, Junchu [1 ]
Cheng, Chao [1 ]
Tian, Guozheng [1 ]
Wang, Xianqiang [3 ]
Liu, Xiaopeng [1 ]
Zhang, Chi [1 ]
Luo, Keming [2 ,3 ]
机构
[1] Hubei Univ Nationalities, Key Lab Biol Resources Protect & Utilizat Hubei P, Enshi 445000, Peoples R China
[2] Chinese Acad Sci, Northwest Inst Plateau Biol, Key Lab Adaptat & Evolut Plateau Biota, Xining 810008, Qinghai, Peoples R China
[3] Southwest Univ, Key Lab Ecoenvironm Three Gorges Reservoir Reg, Inst Resources Bot, Sch Life Sci,Minist Educ Chongqing, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
DIV; Salt stress; MYB; Transcription factor; ABA; CUTICULAR WAX BIOSYNTHESIS; ABSCISIC-ACID; DROUGHT STRESS; GENE-EXPRESSION; ABIOTIC STRESS; FLOWER DEVELOPMENT; FLORAL-TRANSITION; PLANT-RESPONSES; OSMOTIC-STRESS; ABI3;
D O I
10.1007/s00299-018-2321-6
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Key messageAtDIV2 integrates ABA signaling to negatively regulate salt stress in Arabidopsis.AbstractAmDIV (DIVARICATA) is a functional MYB transcription factor (TF) that regulates ventral identity during floral development in Antirrhinum. There are six members of DIV homologs in Arabidopsis; however, the functions of these proteins are largely unknown. Here, we characterized an R-R-type MYB TF AtDIV2, which is involved in salt stress responses and abscisic acid (ABA) signaling. Although universally expressed in tissues, the nuclear-localized AtDIV2 appeared not to be involved in seedling development processes. However, upon exposure to salt stress and exogenous ABA, the transcripts of AtDIV2 are markedly increased in wild-type (Wt) plants. The loss-of-function mutant div2 displayed much more tolerance to salt stress, and several salt-responsive genes were up-regulated. In addition, the div2 mutant showed higher sensitivity to ABA during seed germination. And the germination variance between the Wt and div2 mutant cannot be rectified by treatment with both ABA and sodium tungstate at the same time. ELISA results showed that the endogenous ABA content in the div2 mutant is clearly increased than that in Wt plants. Furthermore, the transcriptional expressions of several ABA-related genes, including ABA1 and ABI3, were elevated. Taken together, ourresults suggestthat the R-R-type MYB TF AtDIV2 plays negative roles in salt stress and is required for ABA signaling in Arabidopsis.
引用
收藏
页码:1499 / 1511
页数:13
相关论文
共 50 条
  • [31] Overexpression of soybean R2R3-MYB transcription factor, GmMYB12B2, and tolerance to UV radiation and salt stress in transgenic Arabidopsis
    Li, X. W.
    Wang, Y.
    Yan, F.
    Li, J. W.
    Zhao, Y.
    Zhao, X.
    Zhai, Y.
    Wang, Q. Y.
    GENETICS AND MOLECULAR RESEARCH, 2016, 15 (02)
  • [32] The poplar R2R3 MYB transcription factor PtrMYB94 coordinates with abscisic acid signaling to improve drought tolerance in plants
    Fang, Qing
    Wang, Xianqiang
    Wang, Haiyang
    Tang, Xiaowen
    Liu, Chi
    Yin, Heng
    Ye, Shenglong
    Jiang, Yuanzhong
    Duan, Yanjiao
    Luo, Keming
    TREE PHYSIOLOGY, 2020, 40 (01) : 46 - 59
  • [33] An R2R3-MYB Transcription Factor Regulates Capsaicinoid Biosynthesis
    Arce-Rodriguez, Magda L.
    Ochoa-Alejoa, Neftali
    PLANT PHYSIOLOGY, 2017, 174 (03) : 1359 - 1370
  • [34] The wheat salinity-induced R2R3-MYB transcription factor TaSIM confers salt stress tolerance in Arabidopsis thaliana
    Yu, Yuehua
    Ni, Zhiyong
    Chen, Quanjia
    Qu, Yanying
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2017, 491 (03) : 642 - 648
  • [35] Genome-wide identification of R2R3-MYB transcription factor subfamily genes involved in salt stress in rice (Oryza sativa L.)
    Zhang, Hao-Cheng
    Gong, Yuan-Hang
    Tao, Tao
    Lu, Shuai
    Zhou, Wen-Yu
    Xia, Han
    Zhang, Xin-Yi
    Yang, Qing-Qing
    Zhang, Ming-Qiu
    Hong, Lian-Min
    Guo, Qian-Qian
    Ren, Xin-Zhe
    Yang, Zhi-Di
    Cai, Xiu-Ling
    Ren, De-Yong
    Gao, Ji-Ping
    Jin, Su-Kui
    Leng, Yu-Jia
    BMC GENOMICS, 2024, 25 (01):
  • [36] Overexpression of the Wild Soybean R2R3-MYB Transcription Factor GsMYB15 Enhances Resistance to Salt Stress and Helicoverpa Armigera in Transgenic Arabidopsis
    Shen, Xin-Jie
    Wang, Yan-Yan
    Zhang, Yong-Xing
    Guo, Wei
    Jiao, Yong-Qing
    Zhou, Xin-An
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (12)
  • [37] A R2R3-MYB transcription factor from Lablab purpureus induced by drought increases tolerance to abiotic stress in Arabidopsis
    Yao, Luming
    Jiang, Yina
    Lu, Xinxin
    Wang, Biao
    Zhou, Pei
    Wu, Tianlong
    MOLECULAR BIOLOGY REPORTS, 2016, 43 (10) : 1089 - 1100
  • [38] The Arabidopsis AP2/ERF transcription factor RAP2.6 participates in ABA, salt and osmotic stress responses
    Zhu, Qiang
    Zhang, Jiantao
    Gao, Xiaoshu
    Tong, Jianhua
    Xiao, Langtao
    Li, Wenbin
    Zhang, Hongxia
    GENE, 2010, 457 (1-2) : 1 - 12
  • [39] Overexpression of a tartary buckwheat R2R3-MYB transcription factor gene, FtMYB9, enhances tolerance to drought and salt stresses in transgenic Arabidopsis
    Gao, Fei
    Zhou, Jing
    Deng, Ren-Yu
    Zhao, Hai-Xia
    Li, Cheng-Lei
    Chen, Hui
    Suzuki, Tatsuro
    Park, Sang-Un
    Wu, Qi
    JOURNAL OF PLANT PHYSIOLOGY, 2017, 214 : 81 - 90
  • [40] Heterologous Expression of the Chrysanthemum R2R3-MYB Transcription Factor CmMYB2 Enhances Drought and Salinity Tolerance, Increases Hypersensitivity to ABA and Delays Flowering in Arabidopsis thaliana
    Shan, Hong
    Chen, Sumei
    Jiang, Jiafu
    Chen, Fadi
    Chen, Yu
    Gu, Chunsun
    Li, Peiling
    Song, Aiping
    Zhu, Xirong
    Gao, Haishun
    Zhou, Guoqin
    Li, Ting
    Yang, Xue
    MOLECULAR BIOTECHNOLOGY, 2012, 51 (02) : 160 - 173