Loop Closure Detection based on Image Covariance Matrix Matching for Visual SLAM

被引:9
|
作者
Ying, Tao [1 ]
Yan, Huaicheng [1 ,2 ]
Li, Zhichen [1 ]
Shi, Kaibo [2 ]
Feng, Xiangsai [3 ]
机构
[1] East China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
[2] Chengdu Univ, Sch Informat Sci & Engn, Chengdu 610106, Peoples R China
[3] Res Ctr Shanghai Solar Energy Engn Technol, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金;
关键词
Cluster loop; histogram; image covariance matrix matching; loop closure detection; visual SLAM; PLACE RECOGNITION; WORDS; BAG; LOCALIZATION; SPACE; MODEL; TIME; MAP;
D O I
10.1007/s12555-020-0730-0
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Loop closure detection is an indispensable part of visual simultaneous location and mapping (SLAM). Correct detection of loop closure can help mobile robot to reduce the problem of cumulative pose drift. At present, the main method for detecting visual SLAM loop closure is the bag of words (BoW) model, but it lacks the spatial distribution information of local features of the image, and the scale will become larger and larger with the increase of data, resulting in the slow operation speed. In order to solve these problems, the image histogram and the key region covariance matrix matching method are used to visually detect the loop closure combined with the global and local image features. In this paper, three different place recognition techniques are studied: histogram only, image covariance matrix matching (ICMM) and cluster loop. Experiments on real datasets show that the proposed method of detecting the loop closure is better than the traditional methods in detecting accuracy and recalling rate, which also improves the operation effect of the SLAM algorithm.
引用
收藏
页码:3708 / 3719
页数:12
相关论文
共 50 条
  • [21] A LiDAR/Visual SLAM Backend with Loop Closure Detection and Graph Optimization
    Chen, Shoubin
    Zhou, Baoding
    Jiang, Changhui
    Xue, Weixing
    Li, Qingquan
    REMOTE SENSING, 2021, 13 (14)
  • [22] Loop Closure Detection Based on Local Semantic Topology for Visual SLAM System
    Zhang K.
    Zhang Y.
    Lü G.
    Gong Y.
    Jiqiren/Robot, 2019, 41 (05): : 649 - 659
  • [23] Loop Closure Detection for Visual SLAM Fusing Semantic Information
    Hu, Mingyue
    Li, Sheng
    Wu, Jingyuan
    Guo, Jiawei
    Li, Haiyu
    Kang, Xiao
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 4136 - 4141
  • [24] Loop Closure Detection for Visual SLAM Using PCANet Features
    Xia, Yifan
    Li, Jie
    Qi, Lin
    Fan, Hao
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 2274 - 2281
  • [25] A Survey of Loop-Closure Detection Method of Visual SLAM in Complex Environments
    Liu Q.
    Duan F.
    Sang Y.
    Zhao J.
    Jiqiren/Robot, 2019, 41 (01): : 112 - 123and136
  • [26] Loop Closure Detection for Visual SLAM Using Simplified Convolution Neural Network
    Xu, Bingbing
    Yang, Jinfu
    Li, Mingai
    Wu, Suishuo
    Shan, Yi
    ADVANCES IN HARMONY SEARCH, SOFT COMPUTING AND APPLICATIONS, 2020, 1063 : 54 - 62
  • [27] Sequence-based mapping for probabilistic visual loop-closure detection
    Tsintotas, Konstantinos A.
    Bampis, Loukas
    An, Shan
    Fragulis, George F.
    Mouroutsos, Spyridon G.
    Gasteratos, Antonios
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST), 2021,
  • [28] A visual SLAM loop closure detection method based on lightweight siamese capsule network
    Zhou, Yuhan
    Sun, Mingli
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [29] Fast and robust loop-closure detection using deep neural networks and matrix transformation for a visual SLAM system
    Chen, Yan
    Zhong, Yang
    Wang, Wenxiang
    Peng, Hongxing
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (06) : 61816
  • [30] Fast and Effective Loop Closure Detection to Improve SLAM Performance
    Guclu, Oguzhan
    Can, Ahmet Burak
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2019, 93 (3-4) : 495 - 517