A Machine-Learning Model for Automatic Detection of Movement Compensations in Stroke Patients

被引:27
|
作者
Kashi, Shir [1 ]
Polak, Ronit Feingold [2 ]
Lerner, Boaz [3 ]
Rokach, Lior [1 ]
Levy-Tzedek, Shelly [4 ,5 ,6 ]
机构
[1] Ben Gurion Univ Negev, Dept Software & Informat Syst Engn, IL-84105 Beer Sheva, Israel
[2] Ben Gurion Univ Negev, Dept Phys Therapy, Recanati Sch Community Hlth Profess, IL-84105 Beer Sheva, Israel
[3] Ben Gurion Univ Negev, Dept Ind Engn & Management, IL-84105 Beer Sheva, Israel
[4] Ben Gurion Univ Negev, Dept Phys Therapy, IL-84105 Beer Sheva, Israel
[5] Ben Gurion Univ Negev, Zlotowski Ctr Neurosci, IL-84105 Beer Sheva, Israel
[6] Univ Freiburg, Freiburg Inst Adv Studies FRIAS, D-79085 Freiburg, Germany
基金
以色列科学基金会;
关键词
Stroke (medical condition); Classification algorithms; Task analysis; Tools; Support vector machines; Feature extraction; Machine learning; Compensations; machine learning; multi-label classification; RAkEL algorithm; random forest; stroke rehabilitation; time series; FUGL-MEYER ASSESSMENT; MOTOR FUNCTION IMPAIRMENT; COORDINATION; RECOVERY; ADULTS; KINEMATICS; FRAMEWORK; REACH;
D O I
10.1109/TETC.2020.2988945
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
During the process of rehabilitation after stroke, it is important that patients know how well they perform their exercise, so they can improve their performance in future repetitions. Standard clinical rating conducted by human observation is the prevailing way today to monitor motor recovery of the patient. Therefore, patients cannot know whether they are performing a movement properly while exercising by themselves. Adhering to the exercise regime makes the rehabilitation process more effective and efficient, and thus a system that can give the patients feedback on their performance is of great value. Here, we built a machine-learning-based automated model that gives patients accurate information on the compensatory (undesirable) movements that they make. To construct the model, we recorded movements from 30 stroke patients, who each performed 18 movements, used to identify the presence of six types of compensatory movements in stroke patients' movement trajectories. We used the random-forest algorithm for training this multi-label classification model. We achieved 85 percent average precision across the six movement compensations. This is the first study to automatically identify movement compensations based on stroke patients' data. This model can be adapted for use in in-clinic and at-home exercise programs for patients after stroke.
引用
收藏
页码:1234 / 1247
页数:14
相关论文
共 50 条
  • [31] A Machine-learning based Unbiased Phishing Detection Approach
    Shirazi, Hossein
    Zweigle, Landon
    Ray, Indrakshi
    PROCEEDINGS OF THE 17TH INTERNATIONAL JOINT CONFERENCE ON E-BUSINESS AND TELECOMMUNICATIONS (SECRYPT), VOL 1, 2020, : 423 - 430
  • [32] Expdf: Exploits Detection System Based on Machine-Learning
    Xin Zhou
    Jianmin Pang
    International Journal of Computational Intelligence Systems, 2019, 12 : 1019 - 1028
  • [33] Shifting Left for Early Detection of Machine-Learning Bugs
    Liblit, Ben
    Luo, Linghui
    Molina, Alejandro
    Mukherjee, Rajdeep
    Patterson, Zachary
    Piskachev, Goran
    Schaf, Martin
    Tripp, Omer
    Visser, Willem
    FORMAL METHODS, FM 2023, 2023, 14000 : 584 - 597
  • [34] Machine-Learning Supported Vulnerability Detection in Source Code
    Sonnekalb, Tim
    ESEC/FSE'2019: PROCEEDINGS OF THE 2019 27TH ACM JOINT MEETING ON EUROPEAN SOFTWARE ENGINEERING CONFERENCE AND SYMPOSIUM ON THE FOUNDATIONS OF SOFTWARE ENGINEERING, 2019, : 1180 - 1183
  • [35] A Machine-Learning Approach for Detection and Quantification of QRS Fragmentation
    Goovaerts, Griet
    Padhy, Sibasankar
    Vandenberk, Bert
    Varon, Carolina
    Willems, Rik
    Van Huffel, Sabine
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2019, 23 (05) : 1980 - 1989
  • [36] Using Machine-Learning for the Damage Detection of Harbour Structures
    Hake, Frederic
    Goettert, Leonard
    Neumann, Ingo
    Alkhatib, Hamza
    REMOTE SENSING, 2022, 14 (11)
  • [37] Expdf: Exploits Detection System Based on Machine-Learning
    Zhou, Xin
    Pang, Jianmin
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2019, 12 (02) : 1019 - 1028
  • [38] A Review on Sarcasm Detection from Machine-Learning Perspective
    Wicana, Setra Genyang
    Ibisoglu, Taha Yasin
    Yavanoglu, Uraz
    2017 11TH IEEE INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC), 2017, : 469 - 476
  • [39] Detection of cognitive impairment using a machine-learning algorithm
    Youn, Young Chul
    Choi, Seong Hye
    Shin, Hae-Won
    Kim, Ko Woon
    Jang, Jae-Won
    Jung, Jason J.
    Hsiung, Ging-Yuek Robin
    Kim, SangYun
    NEUROPSYCHIATRIC DISEASE AND TREATMENT, 2018, 14 : 2939 - 2945
  • [40] Brunnstrom Stage Automatic Evaluation for Stroke Patients Using Extreme Learning Machine
    Yu Lei
    Wang Ji-ping
    Fang Qiang
    Wang Yue
    2012 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS): INTELLIGENT BIOMEDICAL ELECTRONICS AND SYSTEM FOR BETTER LIFE AND BETTER ENVIRONMENT, 2012, : 380 - 383