Cloud Processing of 1000 Genomes Sequencing Data Using Amazon Web Service
被引:0
|
作者:
Huang, Zhuoyi
论文数: 0引用数: 0
h-index: 0
机构:
Baylor Coll Med, Human Genome Sequencing Ctr, Houston, TX 77030 USABaylor Coll Med, Human Genome Sequencing Ctr, Houston, TX 77030 USA
Huang, Zhuoyi
[1
]
Yu, Jin
论文数: 0引用数: 0
h-index: 0
机构:
Baylor Coll Med, Human Genome Sequencing Ctr, Houston, TX 77030 USABaylor Coll Med, Human Genome Sequencing Ctr, Houston, TX 77030 USA
Yu, Jin
[1
]
Yu, Fuli
论文数: 0引用数: 0
h-index: 0
机构:
Baylor Coll Med, Human Genome Sequencing Ctr, Houston, TX 77030 USABaylor Coll Med, Human Genome Sequencing Ctr, Houston, TX 77030 USA
Yu, Fuli
[1
]
机构:
[1] Baylor Coll Med, Human Genome Sequencing Ctr, Houston, TX 77030 USA
来源:
2013 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP)
|
2013年
关键词:
AWS cloud computing;
1000 Genomes project;
SNP calling;
genotype imputation;
D O I:
暂无
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
We deployed the genetic variant pipeline SNPTools in the cloud utilizing the Amazon Web Service (AWS). With the cloud SNPTools pipeline, we performed the SNP calling and genotype imputation on the 1000 Genomes Project Phase 3 data and assessed the quality of SNPs. We also explored different strategies of exploiting Amazon Elastic Cloud Compute instances and the Amazon Simple Storage Service in order to optimize the performance and cost of cloud computing. Our analysis shows that cloud computing will be indispensable to the Next Generation Sequencing data processing.