The Minimum Size of Unextendible Product Bases in the Bipartite Case (and Some Multipartite Cases)

被引:54
作者
Chen, Jianxin [1 ,2 ,3 ]
Johnston, Nathaniel [2 ]
机构
[1] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
[2] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[3] Chinese Acad Sci, Acad Math & Syst Sci, UTS AMSS Joint Res Lab Quantum Computat & Quantum, Beijing, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Minimum Size; Orthogonality Condition; Permutation Matrix; Positive Partial Transpose; Nonzero Product;
D O I
10.1007/s00220-014-2186-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A long-standing open question asks for the minimum number of vectors needed to form an unextendible product basis in a given bipartite or multipartite Hilbert space. A partial solution was found by Alon and Lovasz (J. Comb. Theory Ser. A, 95:169-179, 2001), but since then only a few other cases have been solved. We solve all remaining bipartite cases, as well as a large family of multipartite cases.
引用
收藏
页码:351 / 365
页数:15
相关论文
共 13 条
[1]   Unextendible product bases [J].
Alon, N ;
Lovász, L .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2001, 95 (01) :169-179
[2]   Bell Inequalities with No Quantum Violation and Unextendable Product Bases [J].
Augusiak, R. ;
Stasinska, J. ;
Hadley, C. ;
Korbicz, J. K. ;
Lewenstein, M. ;
Acin, A. .
PHYSICAL REVIEW LETTERS, 2011, 107 (07)
[3]   Unextendible product bases and bound entanglement [J].
Bennett, CH ;
DiVincenzo, DP ;
Mor, T ;
Shor, PW ;
Smolin, JA ;
Terhal, BM .
PHYSICAL REVIEW LETTERS, 1999, 82 (26) :5385-5388
[4]   Quantum nonlocality without entanglement [J].
Bennett, CH ;
DiVincenzo, DP ;
Fuchs, CA ;
Mor, T ;
Rains, E ;
Shor, PW ;
Smolin, JA ;
Wootters, WK .
PHYSICAL REVIEW A, 1999, 59 (02) :1070-1091
[5]   A completely entangled subspace of maximal dimension [J].
Bhat, B. V. Rajarama .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2006, 4 (02) :325-330
[6]   Unextendible product bases, uncompletable product bases and bound entanglement [J].
DiVincenzo, DP ;
Mor, T ;
Shor, PW ;
Smolin, JA ;
Terhal, BM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 238 (03) :379-410
[7]   Unextendible product bases and 1-factorization of complete graphs [J].
Feng, KQ .
DISCRETE APPLIED MATHEMATICS, 2006, 154 (06) :942-949
[8]  
Hershkowitz D., 1993, LINEAR MULTILINEAR A, V34, P3, DOI [10.1080/03081089308818204, DOI 10.1080/03081089308818204]
[9]  
Johnston N, 2013, P 8 C THEOR QUANT CO, DOI [10.4230/LIPIcs.TOC.2013.93, DOI 10.4230/LIPICS.TOC.2013.93]
[10]  
Pedersen T.B., 2002, THESIS AARHUS U