LEARNING FROM THE PAST: CROWD-DRIVEN ACTIVE TRANSFER LEARNING FOR SEMANTIC SEGMENTATION OF MULTI-TEMPORAL 3D POINT CLOUDS

被引:0
作者
Kolle, M. [1 ]
Walter, V [1 ]
Soergel, U. [1 ]
机构
[1] Univ Stuttgart, Inst Photogrammetry, Stuttgart, Germany
来源
XXIV ISPRS CONGRESS IMAGING TODAY, FORESEEING TOMORROW, COMMISSION II | 2022年 / 5-2卷
关键词
Active Learning; Transfer Learning; Domain Adaptation; Crowdsourcing; Multi-Temporality; 3D Point Clouds; Semantic Segmentation; DOMAIN ADAPTATION; CLASSIFICATION;
D O I
10.5194/isprs-annals-V-2-2022-259-2022
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
The main bottleneck of machine learning systems, such as convolutional neural networks, is the availability of labeled training data. Hence, much effort (and thus cost) is caused by setting up proper training data sets. However, models trained on specific data sets often perform unsatisfactorily when used to derive predictions for another (yet related) data set. We aim to overcome this problem by employing active learning to iteratively adapt an existing classifier to another domain. Precisely, we are concerned with semantic segmentation of 3D point clouds of multiple epochs. We first establish a Random Forest classifier for the first epoch of our data set and adapt it for successful prediction to two more temporally disjoint point clouds of the same but extended area. The point clouds, which are part of the newly introduced Hessigheim 3D benchmark data set, incorporate different characteristics with respect to the acquisition date and sensor configuration. We demonstrate that our workflow for domain adaptation is designed in such a way that it i) offers the possibility to greatly reduce labeling effort compared to a passive learning baseline or to an active learning baseline trained from scratch, if the domain gap is small enough and ii) at least does not cause more expenses (compared to a newly initialized active learning loop), if the domain gap is severe. The latter is especially beneficial in scenarios where the similarity of two different domains is hard to assess.
引用
收藏
页码:259 / 266
页数:8
相关论文
共 50 条
  • [41] SEMANTIC ENRICHMENT OF 3D POINT CLOUDS USING 2D IMAGE SEGMENTATION
    Rai, A.
    Srivastava, N.
    Khoshelham, K.
    Jain, K.
    GEOSPATIAL WEEK 2023, VOL. 48-1, 2023, : 1659 - 1666
  • [42] Semantic Segmentation Networks of 3D Point Clouds for RGB-D Indoor Scenes
    Wang, Ya
    Zell, Andreas
    TWELFTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2019), 2020, 11433
  • [43] A comprehensive overview of deep learning techniques for 3D point cloud classification and semantic segmentation
    Sarker, Sushmita
    Sarker, Prithul
    Stone, Gunner
    Gorman, Ryan
    Tavakkoli, Alireza
    Bebis, George
    Sattarvand, Javad
    MACHINE VISION AND APPLICATIONS, 2024, 35 (04)
  • [44] A Deep Learning Driven Active Framework for Segmentation of Large 3D Shape Collections
    George, David
    Xie, Xianghua
    Lai, Yukun
    Tam, Gary K. L.
    COMPUTER-AIDED DESIGN, 2022, 144
  • [45] A 3D Semantic Segmentation Method for Large-Scale Point Cloud on Deep Learning
    Liu, Sihan
    Zhang, Wenyu
    Zhang, Yujun
    Wang, Zhijian
    Gao, Dongxiang
    ENGINEERING LETTERS, 2023, 31 (04) : 1667 - 1674
  • [46] Dense Supervision Propagation for Weakly Supervised Semantic Segmentation on 3D Point Clouds
    Wei, Jiacheng
    Lin, Guosheng
    Yap, Kim-Hui
    Liu, Fayao
    Hung, Tzu-Yi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (06) : 4367 - 4377
  • [47] Deep Learning on 3D Semantic Segmentation: A Detailed Review
    Betsas, Thodoris
    Georgopoulos, Andreas
    Doulamis, Anastasios
    Grussenmeyer, Pierre
    REMOTE SENSING, 2025, 17 (02)
  • [48] Localization- Based Active Learning (LOCAL) for Object Detection in 3D Point Clouds
    Moses, Aimee
    Jakkampudi, Srikanth
    Danner, Cheryl
    Biega, Derek
    GEOSPATIAL INFORMATICS XII, 2022, 12099
  • [49] Efficient 3D Scene Semantic Segmentation via Active Learning on Rendered 2D Images
    Rong, Mengqi
    Cui, Hainan
    Shen, Shuhan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 3521 - 3535
  • [50] Image Understands Point Cloud: Weakly Supervised 3D Semantic Segmentation via Association Learning
    Sun, Tianfang
    Zhang, Zhizhong
    Tan, Xin
    Qu, Yanyun
    Xie, Yuan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 1838 - 1852