The catenary degrees of elements in numerical monoids generated by arithmetic sequences

被引:6
|
作者
Chapman, Scott T. [1 ]
Corrales, Marly [2 ]
Miller, Andrew [3 ]
Miller, Chris [4 ]
Patel, Dhir [5 ]
机构
[1] Sam Houston State Univ, Dept Math, Box 2206, Huntsville, TX 77341 USA
[2] Univ Southern Calif, Dept Math, Los Angeles, CA USA
[3] Amherst Coll, Dept Math, Amherst, MA 01002 USA
[4] Univ Wisconsin Madison, Dept Math, Madison, WI USA
[5] Rutgers State Univ, Dept Math, Hill Ctr Math Sci, Piscataway, NJ USA
基金
美国国家科学基金会;
关键词
Catenary degree; non-unique factorizations; numerical monoid; 20M13; 20M14; 11D05; TAME DEGREE; KRULL MONOIDS; DOMAINS;
D O I
10.1080/00927872.2017.1310878
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compute the catenary degree of elements contained in numerical monoids generated by arithmetic sequences. We find that this can be done by describing each element in terms of the cardinality of its length set and of its set of factorizations. As a corollary, we find for such monoids that the catenary degree becomes fixed on large elements. This allows us to define and compute the dissonance number- the largest element with a catenary degree different from the fixed value. We determine the dissonance number in terms of the arithmetic sequence's starting point and its number of generators.
引用
收藏
页码:5443 / 5452
页数:10
相关论文
共 45 条
  • [11] Sequences and degrees associated with models arithmetic
    Knight, JF
    Logic Colloquim 01, Proceedings, 2005, 20 : 217 - 241
  • [12] Factorization invariants of Puiseux monoids generated by geometric sequences
    Chapman, Scott T.
    Gotti, Felix
    Gotti, Marly
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (01) : 380 - 396
  • [13] THE CATENARY AND TAME DEGREES ON A NUMERICAL MONOID ARE EVENTUALLY PERIODIC
    Chapman, Scott T.
    Corrales, Marly
    Miller, Andrew
    Miller, Chris
    Patel, Dhir
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 97 (03) : 289 - 300
  • [14] On arithmetic means of sequences generated by a periodic function
    Fiorito, G
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1999, 42 (02): : 184 - 189
  • [15] ON THE SETS OF LENGTHS OF PUISEUX MONOIDS GENERATED BY MULTIPLE GEOMETRIC SEQUENCES
    Polo, Harold
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 35 (04): : 1057 - 1073
  • [16] A note on sets of lengths of powers of elements of finitely generated monoids
    Hassler, W
    Arithmetical Properties of Commutative Rings and Monoids, 2005, 241 : 293 - 303
  • [17] Numerical semigroups generated by quadratic sequences
    Mara Hashuga
    Megan Herbine
    Alathea Jensen
    Semigroup Forum, 2022, 104 : 330 - 357
  • [18] Numerical semigroups generated by quadratic sequences
    Hashuga, Mara
    Herbine, Megan
    Jensen, Alathea
    SEMIGROUP FORUM, 2022, 104 (02) : 330 - 357
  • [19] Proportionally modular numerical semigroups generated by arithmetic progressions
    Elizeche, Edgar Federico
    Tripathi, Amitabha
    SEMIGROUP FORUM, 2021, 103 (03) : 829 - 847
  • [20] STRONGLY ASYMMETRIC SEQUENCES GENERATED BY 4 ELEMENTS
    FIALA, F
    MATHEMATICS OF COMPUTATION, 1971, 25 (113) : 155 - +