The catenary degrees of elements in numerical monoids generated by arithmetic sequences

被引:6
|
作者
Chapman, Scott T. [1 ]
Corrales, Marly [2 ]
Miller, Andrew [3 ]
Miller, Chris [4 ]
Patel, Dhir [5 ]
机构
[1] Sam Houston State Univ, Dept Math, Box 2206, Huntsville, TX 77341 USA
[2] Univ Southern Calif, Dept Math, Los Angeles, CA USA
[3] Amherst Coll, Dept Math, Amherst, MA 01002 USA
[4] Univ Wisconsin Madison, Dept Math, Madison, WI USA
[5] Rutgers State Univ, Dept Math, Hill Ctr Math Sci, Piscataway, NJ USA
基金
美国国家科学基金会;
关键词
Catenary degree; non-unique factorizations; numerical monoid; 20M13; 20M14; 11D05; TAME DEGREE; KRULL MONOIDS; DOMAINS;
D O I
10.1080/00927872.2017.1310878
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compute the catenary degree of elements contained in numerical monoids generated by arithmetic sequences. We find that this can be done by describing each element in terms of the cardinality of its length set and of its set of factorizations. As a corollary, we find for such monoids that the catenary degree becomes fixed on large elements. This allows us to define and compute the dissonance number- the largest element with a catenary degree different from the fixed value. We determine the dissonance number in terms of the arithmetic sequence's starting point and its number of generators.
引用
收藏
页码:5443 / 5452
页数:10
相关论文
共 45 条
  • [1] The catenary and tame degree of numerical monoids generated by generalized arithmetic sequences
    Omidali, Mehdi
    FORUM MATHEMATICUM, 2012, 24 (03) : 627 - 640
  • [2] REALISABLE SETS OF CATENARY DEGREES OF NUMERICAL MONOIDS
    O'Neill, Christopher
    Pelayo, Roberto
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2018, 97 (02) : 240 - 245
  • [3] On the set of catenary degrees of finitely generated cancellative commutative monoids
    O'Neill, Christopher
    Ponomarenko, Vadim
    Tate, Reuben
    Webb, Gautam
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2016, 26 (03) : 565 - 576
  • [4] MINIMAL RELATIONS AND CATENARY DEGREES IN KRULL MONOIDS
    Fan, Yushuang
    Geroldinger, Alfred
    JOURNAL OF COMMUTATIVE ALGEBRA, 2019, 11 (01) : 29 - 47
  • [5] Numerical semigroups generated by generalized arithmetic sequences
    Matthews, GL
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (09) : 3459 - 3469
  • [6] Numerical semigroups generated by concatenation of arithmetic sequences
    Mehta, Ranjana
    Saha, Joydip
    Sengupta, Indranath
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (09)
  • [7] The catenary and tame degree of numerical monoids
    Chapman, S. T.
    Garcia-Sanchez, P. A.
    Llena, D.
    FORUM MATHEMATICUM, 2009, 21 (01) : 117 - 129
  • [8] The Catenary and Tame Degree in Finitely Generated Commutative Cancellative Monoids
    S. T. Chapman
    P. A. García-Sánchez
    D. Llena
    V. Ponomarenko
    J. C. Rosales
    manuscripta mathematica, 2006, 120
  • [9] The catenary and tame degree in finitely generated commutative cancellative monoids
    Chapman, S. T.
    Garcia-Sanchez, P. A.
    Llena, D.
    Ponomarenko, V.
    Rosales, J. C.
    MANUSCRIPTA MATHEMATICA, 2006, 120 (03) : 253 - 264
  • [10] SETS GENERATED BY ARITHMETIC SEQUENCES
    ALLADI, K
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES SECTION A, 1975, 81 (06): : 245 - 251