SubspaceEM: A fast maximum-a-posteriori algorithm for cryo-EM single particle reconstruction

被引:17
作者
Dvornek, Nicha C. [1 ]
Sigworth, Fred J. [2 ,3 ]
Tagare, Hemant D. [1 ,2 ,4 ]
机构
[1] Yale Univ, Sch Med, Dept Diagnost Radiol, New Haven, CT 06510 USA
[2] Yale Univ, Dept Biomed Engn, New Haven, CT 06520 USA
[3] Yale Univ, Sch Med, Dept Cellular & Mol Physiol, New Haven, CT 06510 USA
[4] Yale Univ, Dept Elect Engn, New Haven, CT 06520 USA
关键词
Cryo-electron microscopy; Single particle reconstruction; Maximum-likelihood; Maximum-a-posteriori; Expectation-maximization algorithm; Fast image processing; ELECTRON-MICROSCOPY; 3-D RECONSTRUCTIONS; LIKELIHOOD; REFINEMENT; RESOLUTION; IMAGES; NUMBER;
D O I
10.1016/j.jsb.2015.03.009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Single particle reconstruction methods based on the maximum-likelihood principle and the expectation-maximization (E-M) algorithm are popular because of their ability to produce high resolution structures. However, these algorithms are computationally very expensive, requiring a network of computational servers. To overcome this computational bottleneck, we propose a new mathematical framework for accelerating maximum-likelihood reconstructions. The speedup is by orders of magnitude and the proposed algorithm produces similar quality reconstructions compared to the standard maximum-likelihood formulation. Our approach uses subspace approximations of the cryo-electron microscopy (cryo-EM) data and projection images, greatly reducing the number of image transformations and comparisons that are computed. Experiments using simulated and actual cryo-EM data show that speedup in overall execution time compared to traditional maximum-likelihood reconstruction reaches factors of over 300. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:200 / 214
页数:15
相关论文
共 30 条
  • [1] [Anonymous], 2006, Pattern recognition and machine learning
  • [2] Structure of the ribosome with elongation factor G trapped in the pretranslocation state
    Brilot, Axel F.
    Korostelev, Andrei A.
    Ermolenko, Dmitri N.
    Grigorieff, Nikolaus
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (52) : 20994 - 20999
  • [3] SCREE TEST FOR NUMBER OF FACTORS
    CATTELL, RB
    [J]. MULTIVARIATE BEHAVIORAL RESEARCH, 1966, 1 (02) : 245 - 276
  • [4] The Advent of Near-Atomic Resolution in Single-Particle Electron Microscopy
    Cheng, Yifan
    Walz, Thomas
    [J]. ANNUAL REVIEW OF BIOCHEMISTRY, 2009, 78 : 723 - 742
  • [5] MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM
    DEMPSTER, AP
    LAIRD, NM
    RUBIN, DB
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01): : 1 - 38
  • [6] Ab initio reconstruction and experimental design for cryo electron microscopy
    Doerschuk, PC
    Johnson, JE
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (05) : 1714 - 1729
  • [7] FREALIGN: High-resolution refinement of single particle structures
    Grigorieff, Nikolaus
    [J]. JOURNAL OF STRUCTURAL BIOLOGY, 2007, 157 (01) : 117 - 125
  • [8] Tilt-Pair Analysis of Images from a Range of Different Specimens in Single-Particle Electron Cryomicroscopy
    Henderson, Richard
    Chen, Shaoxia
    Chen, James Z.
    Grigorieff, Nikolaus
    Passmore, Lori A.
    Ciccarelli, Luciano
    Rubinstein, John L.
    Crowther, R. Anthony
    Stewart, Phoebe L.
    Rosenthal, Peter B.
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2011, 413 (05) : 1028 - 1046
  • [9] Jolliffe I., 2002, PRINCIPAL COMPONENT, DOI [10.1007/978-1-4757-1904-8_7, 10.1016/0169-7439(87)80084-9]
  • [10] A Bayesian adaptive basis algorithm for single particle reconstruction
    Kucukelbir, Alp
    Sigworth, Fred J.
    Tagare, Hemant D.
    [J]. JOURNAL OF STRUCTURAL BIOLOGY, 2012, 179 (01) : 56 - 67