Thermodynamic implications of confinement for a waterlike fluid

被引:136
作者
Truskett, TM [1 ]
Debenedetti, PG
Torquato, S
机构
[1] Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
[3] Princeton Univ, Princeton Mat Inst, Princeton, NJ 08544 USA
关键词
D O I
10.1063/1.1336569
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A theoretical framework is introduced for studying the thermodynamics and phase behavior of a "waterlike" fluid film confined between hydrophobic plane surfaces. To describe the hydrogen-bonding interactions in the fluid film, an earlier analytical theory for uniform associating fluids is generalized. Two levels of approximation are presented. In the first, the reference fluid is assumed to be homogeneous. Here, the primary effect of the confining walls is to reduce the average number of favorable fluid-fluid interactions relative to the bulk fluid. The implications of this energetic penalty for the phase behavior and, in particular, the low-temperature waterlike anomalies of the fluid are examined. It is shown that the reduction of favorable fluid-fluid interactions can promote strong hydrophobic interactions between the confining surfaces at nanometer length scales, induced by the evaporation of the fluid film. In the second level of approximation, the inhomogeneous nature of the reference fluid is accounted for by a density functional theory. The primary effect of the density modulations is to promote or disrupt hydrogen bonding in distinct layers within the pore. Interestingly, when the reference fluid is treated as inhomogeneous, the theory predicts the possibility of a new low-temperature phase transition in the strongly confined fluid. (C) 2001 American Institute of Physics.
引用
收藏
页码:2401 / 2418
页数:18
相关论文
共 113 条
[1]  
Abramowitz M., 1965, NBS APPL MATH SERIES, V55
[2]   HEAT-CAPACITY OF WATER AT EXTREMES OF SUPERCOOLING AND SUPERHEATING [J].
ANGELL, CA ;
OGUNI, M ;
SICHINA, WJ .
JOURNAL OF PHYSICAL CHEMISTRY, 1982, 86 (06) :998-1002
[3]   SPIN-ECHO DIFFUSION-COEFFICIENTS OF WATER TO 2380-BAR AND -20DEGREESC [J].
ANGELL, CA ;
FINCH, ED ;
WOOLF, LA ;
BACH, P .
JOURNAL OF CHEMICAL PHYSICS, 1976, 65 (08) :3063-3074
[4]   Length scale of cooperativity in the dynamic glass transition [J].
Arndt, M ;
Stannarius, R ;
Groothues, H ;
Hempel, E ;
Kremer, F .
PHYSICAL REVIEW LETTERS, 1997, 79 (11) :2077-2080
[5]  
Barrer R.M., 1978, ZEOLITES CLAY MINERA
[6]   Glass transition in liquids: Two versus three-dimensional confinement [J].
Barut, G ;
Pissis, P ;
Pelster, R ;
Nimtz, G .
PHYSICAL REVIEW LETTERS, 1998, 80 (16) :3543-3546
[7]   Structure and dynamics of water near hydrophilic surfaces [J].
Bellissent-Funel, MC .
JOURNAL OF MOLECULAR LIQUIDS, 1998, 78 (1-2) :19-28
[8]   Is there a liquid-liquid phase transition in supercooled water? [J].
Bellissent-Funel, MC .
EUROPHYSICS LETTERS, 1998, 42 (02) :161-166
[9]   X-ray and neutron scattering studies of the structure of water at a hydrophobic surface [J].
BellissentFunel, MC ;
SridiDorbez, R ;
Bosio, L .
JOURNAL OF CHEMICAL PHYSICS, 1996, 104 (24) :10023-10029
[10]  
Ben-Naim A., 1980, HYDROPHOBIC INTERACT